How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses

Adeboye PT, Olsson L, Bettiga M (2016) A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae. Bioresour Technol 212:11–19. https://doi.org/10.1016/j.biortech.2016.04.003

CAS  Article  PubMed  Google Scholar 

Adeboye PT, Bettiga M, Olsson L (2017) ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci Rep 7:42635. https://doi.org/10.1038/srep42635

CAS  Article  PubMed  PubMed Central  Google Scholar 

Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110:2616–2623. https://doi.org/10.1002/bit.24938

CAS  Article  PubMed  Google Scholar 

Almeida JR, Roder A, Modig T, Laadan B, Liden G, Gorwa-Grauslund MF (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945. https://doi.org/10.1007/s00253-008-1364-y

CAS  Article  PubMed  Google Scholar 

Alriksson B, Horváth IS, Jonsson LJ (2010) Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem 45:264–271. https://doi.org/10.1016/j.procbio.2009.09.016

CAS  Article  Google Scholar 

An J, Kwon H, Kim E, Lee YM, Ko HJ, Park H, Choi IG, Kim S, Kim KH, Kim W, Choi W (2015) Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environ Microbiol 17:656–669. https://doi.org/10.1111/1462-2920.12489

CAS  Article  PubMed  Google Scholar 

Ask M, Mapelli V, Hock H, Olsson L, Bettiga M (2013) Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 12:87. https://doi.org/10.1186/1475-2859-12-87

CAS  Article  PubMed  PubMed Central  Google Scholar 

Balderas-Hernandez VE, Correia K, Mahadevan R (2018) Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid. J Ind Microbiol Biotechnol 45:735–751. https://doi.org/10.1007/s10295-018-2053-1

CAS  Article  PubMed  Google Scholar 

Bao Z, HamediRad M, Xue P, Xiao H, Tasan I, Chao R, Liang J, Zhao H (2018) Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol 36:505–508. https://doi.org/10.1038/nbt.4132

CAS  Article  PubMed  Google Scholar 

Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839. https://doi.org/10.1038/nrg3564

CAS  Article  PubMed  PubMed Central  Google Scholar 

Biot-Pelletier D, Pinel D, Larue K, Martin VJJ (2018) Determinants of selection in yeast evolved by genome shuffling. Biotechnol Biofuels 11:282. https://doi.org/10.1186/s13068-018-1283-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518. https://doi.org/10.1038/nature11514

CAS  Article  PubMed  PubMed Central  Google Scholar 

Blount BA, Gowers GF, Ho JCH, Ledesma-Amaro R, Jovicevic D, McKiernan RM, Xie ZX, Li BZ, Yuan YJ, Ellis T (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9:1932. https://doi.org/10.1038/s41467-018-03143-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brandt BA, Garcia-Aparicio MDP, Gorgens JF, van Zyl WH (2021) Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. Biotechnol Biofuels 14:173. https://doi.org/10.1186/s13068-021-02021-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cao W, Zhao W, Yang B, Wang X, Shen Y, Wei T, Qin W, Li Z, Bao X (2021) Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae. Microb Cell Fact 20:142. https://doi.org/10.1186/s12934-021-01633-z

CAS  Article  PubMed  PubMed Central  Google Scholar 

Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallstrom BM, Petranovic D, Nielsen J (2014) Biofuels. Altered sterol composition renders yeast thermotolerant. Science 346:75–78. https://doi.org/10.1126/science.1258137

CAS  Article  PubMed  Google Scholar 

Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N (2016a) Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels 9:9. https://doi.org/10.1186/s13068-015-0418-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Stabryla L, Wei N (2016b) Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl Environ Microbiol 82:2156–2166. https://doi.org/10.1128/AEM.03718-15

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen H, Li J, Wan C, Fang Q, Bai F, Zhao X (2019) Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz055

Article  PubMed  PubMed Central  Google Scholar 

Cheng C, Almario MP, Kao KC (2015) Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates. Biotechnol Lett 37:2193–2200. https://doi.org/10.1007/s10529-015-1895-0

CAS  Article  PubMed  Google Scholar 

Cheng C, Zhao X, Zhang M, Bai F (2016) Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fow010

Article  PubMed  Google Scholar 

Cheng Y, Zhu H, Du Z, Guo X, Zhou C, Wang Z, He X (2021) Eukaryotic translation factor eIF5A contributes to acetic acid tolerance in Saccharomyces cerevisiae via transcriptional factor Ume6p. Biotechnol Biofuels 14:38. https://doi.org/10.1186/s13068-021-01885-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cunha JT, Aguiar TQ, Romani A, Oliveira C, Domingues L (2015) Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresour Technol 191:7–16. https://doi.org/10.1016/j.biortech.2015.05.006

CAS  Article  PubMed  Google Scholar 

Cunha JT, Costa CE, Ferraz L, Romani A, Johansson B, Sa-Correia I, Domingues L (2018) HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 102:4589–4600. https://doi.org/10.1007/s00253-018-8955-z

CAS  Article  PubMed  Google Scholar 

Cunha JT, Romani A, Costa CE, Sa-Correia I, Domingues L (2019) Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 103:159–175. https://doi.org/10.1007/s00253-018-9478-3

CAS  Article  PubMed  Google Scholar 

de Witt RN, Kroukamp H, Van Zyl WH, Paulsen IT, Volschenk H (2019) QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz047

Article  PubMed  Google Scholar 

Ding J, Holzwarth G, Bradford CS, Cooley B, Yoshinaga AS, Patton-Vogt J, Abeliovich H, Penner MH, Bakalinsky AT (2015a) PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biotechnol 99:8667–8680. https://doi.org/10.1007/s00253-015-6708-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT (2015b) Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. Fems Microbiol Lett 362:1–7. https://doi.org/10.1093/femsle/fnu042

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dos Santos LV, Carazzolle MF, Nagamatsu ST, Sampaio NM, Almeida LD, Pirolla RA, Borelli G, Correa TL, Argueso JL, Pereira GA (2016) Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Sci Rep 6:38676. https://doi.org/10.1038/srep38676

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact 12:64. https://doi.org/10.1186/1475-2859-12-64

Article  PubMed  PubMed Central  Google Scholar 

Espinosa MI, Gonzalez-Garcia RA, Valgepea K, Plan MR, Scott C, Pretorius IS, Marcellin E, Paulsen IT, Williams TC (2020) Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun 11:5564. https://doi.org/10.1038/s41467-020-19390-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Nino M, Pulido S, Stefanoska D, Perez C, Gonzalez-Ramos D, van Maris AJA, Marchal K, Nevoigt E, Swinnen S (2018) Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy100

Article  PubMed  Google Scholar 

Fisher KJ, Buskirk SW, Vignogna RC, Marad DA, Lang GI (2018) Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet 14:e1007396. https://doi.org/10.1371/journal.pgen.1007396

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fletcher E, Baetz K (2020) Multi-faceted systems biology approaches present a cellular landscape of phenolic compound inhibition in Saccharomyces cerevisiae. Front Bioeng Biotechnol 8:539902. https://doi.org/10.3389/fbioe.2020.539902

Article  PubMed  PubMed Central  Google Scholar 

Fletcher E, Gao K, Mercurio K, Ali M, Baetz K (2019) Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 52:98–109.

留言 (0)

沒有登入
gif