Peking geckos (Gekko swinhonis) traversing upward steps: the effect of step height on the transition from horizontal to vertical locomotion

Aerts P, Van Damme R, Vanhooydonck B, Zaaf A, Herrel A (2000) Lizard locomotion: how morphology meets ecology. Neth J Zool 50:261–277. https://doi.org/10.1163/156854200505865

Article  Google Scholar 

Alexander DE, Wang ZJ (2003) Nature’s flyers: birds, insects, and the biomechanics of flight. Phys Today 56:60–60. https://doi.org/10.1063/1.1583537

Article  Google Scholar 

Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090. https://doi.org/10.1093/icb/42.6.1081

Article  PubMed  Google Scholar 

Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685. https://doi.org/10.1038/35015073

CAS  Article  PubMed  Google Scholar 

Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006) Dynamics of geckos running vertically. J Exp Biol 209:260–272. https://doi.org/10.1242/jeb.01980

CAS  Article  PubMed  Google Scholar 

Bahlman JW, Swartz SM, Riskin DK, Breuer KS (2013) Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus). J R Soc Interface 10:20120794. https://doi.org/10.1098/rsif.2012.0794

Article  PubMed  PubMed Central  Google Scholar 

Balebail S, Raja SK, Sane SP (2019) Landing maneuvers of houseflies on vertical and inverted surfaces. PLoS One 14:e0219861. https://doi.org/10.1371/journal.pone.0219861

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bg G, Kuo CY, Irschick D (2013) The impact of tail loss on stability during jumping in green anoles (Anolis carolinensis). Physiol Biochem Zool 86:680–689. https://doi.org/10.1086/673756

Article  Google Scholar 

Burrows M, Cullen DA, Dorosenko M, Sutton GP (2015) Mantises exchange angular momentum between three rotating body parts to jump precisely to targets. Curr Biol 25:786–789. https://doi.org/10.1016/j.cub.2015.01.054

CAS  Article  PubMed  Google Scholar 

Byrnes G, Spence AJ (2011) Ecological and biomechanical insights into the evolution of gliding in mammals. Integr Comp Biol 51:991–1001. https://doi.org/10.1093/icb/icr069

Article  PubMed  Google Scholar 

Byrnes G, Lim NT, Spence AJ (2008) Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proc Biol Sci 275:1007–1013. https://doi.org/10.1098/rspb.2007.1684

Article  PubMed  PubMed Central  Google Scholar 

Chen JJ, Peattie AM, Autumn K, Full RJ (2006) Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol 209:249–259. https://doi.org/10.1242/jeb.01979

CAS  Article  PubMed  Google Scholar 

Endlein T, Ji A, Samuel D, Yao N, Wang Z, Barnes WJ, Federle W, Kappl M, Dai Z (2013) Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces. J R Soc Interface 10:20120838. https://doi.org/10.1098/rsif.2012.0838

Article  PubMed  PubMed Central  Google Scholar 

Evangelista C, Kraft P, Dacke M, Reinhard J, Srinivasan MV (2010) The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera. J Exp Biol 213:262–270. https://doi.org/10.1242/jeb.037465

CAS  Article  PubMed  Google Scholar 

Federle W, Barnes W, Baumgartner W, Drechsler P, Smith J (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697. https://doi.org/10.1098/rsif.2006.0135

CAS  Article  PubMed  PubMed Central  Google Scholar 

Garner AM, Pamfilie AM, Dhinojwala A, Niewiarowski PH (2021) Tokay geckos (Gekkonidae: Gekko gecko ) preferentially use substrates that elicit maximal adhesive performance. J Exp Biol 224:jeb.241240. https://doi.org/10.1242/jeb.241240

Article  Google Scholar 

Gart SW, Li C (2018) Body-terrain interaction affects large bump traversal of insects and legged robots. Bioinspir Biomim 13:026005. https://doi.org/10.1088/1748-3190/aaa2d0

Article  PubMed  Google Scholar 

Gart SW, Yan C, Othayoth R, Ren Z, Li C (2018) Dynamic traversal of large gaps by insects and legged robots reveals a template. Bioinspir Biomim 13:026006. https://doi.org/10.1088/1748-3190/aaa2cd

Article  PubMed  Google Scholar 

Gillis G, Ekstrom L, Azizi E (2014) Biomechanics and control of landing in toads. Integr Comp Biol 54:1136–1147. https://doi.org/10.1093/icb/icu053

Article  PubMed  Google Scholar 

Han L, Wang Z, Ji A, Dai Z (2011) Grip and detachment of locusts on inverted sandpaper substrates. Bioinspir Biomim 6:046005. https://doi.org/10.1088/1748-3182/6/4/046005

Article  PubMed  Google Scholar 

Hawkes EW, Christensen DL, Eason EV, Estrada MA, Heverly M, Hilgemann E, Jiang H, Pope MT, Parness A, Cutkosky MR (2013) Dynamic surface grasping with directional adhesion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 5487–5493. http://doi.org/https://doi.org/10.1109/iros.2013.6697151

Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001. https://doi.org/10.1088/1748-3182/3/3/034001

Article  PubMed  Google Scholar 

Higham TE, Korchari P, McBrayer LD (2011) How to climb a tree: lizards accelerate faster, but pause more, when escaping on vertical surfaces. Biol J Linn Soc 102:83–90. https://doi.org/10.1111/j.1095-8312.2010.01564.x

Article  Google Scholar 

Higham TE, Birn-Jeffery AV, Collins CE, Hulsey CD, Russell AP (2015) Adaptive simplification and the evolution of gecko locomotion: morphological and biomechanical consequences of losing adhesion. Proc Natl Acad Sci USA 112:809–814. https://doi.org/10.1073/pnas.1418979112

CAS  Article  PubMed  Google Scholar 

Jayaram K, Full RJ (2016) Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proc Natl Acad Sci USA 113:E950–E957. https://doi.org/10.1073/pnas.1514591113

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jayaram K, Mongeau JM, Mohapatra A, Birkmeyer P, Fearing RS, Full RJ (2018) Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots. J R Soc Interface 15:20170664. https://doi.org/10.1098/rsif.2017.0664

Article  PubMed  PubMed Central  Google Scholar 

Kohlsdorf T, Biewener AA (2006) Negotiating obstacles: running kinematics of the lizard Sceloporus malachiticus. J Zool 270:359–371. https://doi.org/10.1111/j.1469-7998.2006.00150.x

Article  Google Scholar 

Kramer DL, McLaughlin RL (2001) The behavioral ecology of intermittent locomotion. Am Zool 41:137–153. https://doi.org/10.1093/icb/41.2.137

Article  Google Scholar 

Labonte D, Federle W (2015) Scaling and biomechanics of surface attachment in climbing animals. Philos Trans R Soc Lond B Biol Sci 370:20140027. https://doi.org/10.1098/rstb.2014.0027

Article  PubMed  PubMed Central  Google Scholar 

Lammers AR, Earls KD, Biknevicius AR (2006) Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. J Exp Biol 209:4154–4166. https://doi.org/10.1242/jeb.02493

Article  PubMed  Google Scholar 

Li C, Pullin AO, Haldane DW, Lam HK, Fearing RS, Full RJ (2015) Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspir Biomim 10:046003. https://doi.org/10.1088/1748-3190/10/4/046003

Article  PubMed  Google Scholar 

Libby T, Moore TY, Chang-Siu E, Li D, Cohen DJ, Jusufi A, Full RJ (2012) Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481:181–184. https://doi.org/10.1038/nature10710

CAS  Article  PubMed  Google Scholar 

Marcellini DL, Keefer TE (1976) Analysis of the gliding behavior of Ptychozoon lionatum (Reptilia: Gekkonidae). Herpetologica. https://doi.org/10.2307/3891917

Article  Google Scholar 

McGuire JA, Dudley R (2005) The cost of living large: comparative gliding performance in flying lizards (Agamidae: Draco). Am Nat 166:93–106. https://doi.org/10.1086/430725

Article  PubMed  Google Scholar 

Mongeau JM, Demir A, Lee J, Cowan NJ, Full RJ (2013) Locomotion- and mechanics-mediated tactile sensing: antenna reconfiguration simplifies control during high-speed navigation in cockroaches. J Exp Biol 216:4530–4541. https://doi.org/10.1242/jeb.083477

Article  PubMed  Google Scholar 

Mongeau JM, Sponberg SN, Miller JP, Full RJ (2015) Sensory processing within cockroach antenna enables rapid implementation of feedback control for high-speed running maneuvers. J Exp Biol 218:2344–2354. https://doi.org/10.1242/jeb.118604

Article  PubMed  Google Scholar 

Paskins KE, Bowyer A, Megill WM, Scheibe JS (2007) Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus. J Exp Biol 210:1413–1423. https://doi.org/10.1242/jeb.02747

Article  PubMed  Google Scholar 

Pillai R, Nordberg E, Riedel J, Schwarzkopf L (2020) Geckos cling best to, and prefer to use, rough surfaces. Front Zool. https://doi.org/10.1186/s12983-020-00374-w

Article  PubMed  PubMed Central  Google Scholar 

Russell AP, Higham TE (2009) A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system. Proc Biol Sci 276:3705–3709. https://doi.org/10.1098/rspb.2009.0946

Article  PubMed  PubMed Central  Google Scholar 

Russell AP, Johnson MK (2014) Between a rock and a soft place: microtopography of the locomotor substrate and the morphology of the setal fields of Namibian day geckos (Gekkota: Gekkonidae: Rhoptropus). Acta Zoologica 95:299–318. https://doi.org/10.1111/azo.12028

Article  Google Scholar 

Schmidtg A, Fischer MS (2011) The kinematic consequences of locomotion on sloped arboreal substrates in a generalized (Rattus norvegicus) and a specialized (Sciurus vulgaris) rodent. J Exp Biol 214:2544–2559. https://doi.org/10.1242/jeb.051086

Article  PubMed  Google Scholar 

Schnyer A, Gallardo M, Cox S, Gillis G (2014) Indirect evidence for elastic energy playing a role in limb recovery during toad hopping. Biol Lett 10:20140418. https://doi.org/10.1098/rsbl.2014.0418

Article  PubMed  PubMed Central  Google Scholar 

Song Y, Dai Z, Wang Z, Ji A, Gorb SN (2016) The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Sci Rep 6:26219. https://doi.org/10.1038/srep26219

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif