Review: biological engineering for nature-based climate solutions

National Academies of Sciences, Engineering, and Medicine. Global Change Research Needs and Opportunities for 2022-2031; The National Academies Press: Washington, DC, 2021. https://doi.org/10.17226/26055.

Willis KJ, Jeffers ES, Tovar C. What makes a terrestrial ecosystem resilient? Science. 2018;359(6379):988–9. https://doi.org/10.1126/science.aar5439.

Estrada F, Botzen WJW. Economic impacts and risks of climate change under failure and success of the Paris agreement. Ann N Y Acad Sci. 2021;1504(1):95–115. https://doi.org/10.1111/nyas.14652.

Google Scholar 

Anderson CM, DeFries RS, Litterman R, Matson PA, Nepstad DC, Pacala S, et al. Natural climate solutions are not enough. Science. 2019;363(6430):933–4. https://doi.org/10.1126/science.aaw2741.

Welsby D, Price J, Pye S, Ekins P. Unextractable fossil fuels in a 1.5 °C world. Nature. 2021;597(7875):230–4. https://doi.org/10.1038/s41586-021-03821-8.

Google Scholar 

Nasi R. The Glasgow Leaders’ Declaration on Forests and Land Use: Significance toward “Net Zero.” Global Change Biol.  2022;28(6):1951–2. https://doi.org/10.1111/gcb.16039.

Fargione, J. E.; Bassett, S.; Boucher, T.; Bridgham, S. D.; Conant, R. T.; Cook-Patton, S. C.; Ellis, P. W.; Falcucci, A.; Fourqurean, J. W.; Gopalakrishna, T.; Gu, H.; Henderson, B.; Hurteau, M. D.; Kroeger, K. D.; Kroeger, T.; Lark, T. J.; Leavitt, S. M.; Lomax, G.; McDonald, R. I.; Megonigal, J. P.; Miteva, D. A.; Richardson, C. J.; Sanderman, J.; Shoch, D.; Spawn, S. A.; Veldman, J. W.; Williams, C. A.; Woodbury, P. B.; Zganjar, C.; Baranski, M.; Elias, P.; Houghton, R. A.; Landis, E.; McGlynn, E.; Schlesinger, W. H.; Siikamaki, J. V.; Sutton-Grier, A. E.; Griscom, B. W. Natural Climate Solutions for the United States. Science Advances 2018;4(11):eaat1869. https://doi.org/10.1126/sciadv.aat1869.

Lal R. Negative emission farming. J Soil Water Conserv. 2021;76(3):61A–4A. https://doi.org/10.2489/jswc.2021.0419A.

Google Scholar 

Maaz TM, Sapkota TB, Eagle AJ, Kantar MB, Bruulsema TW, Majumdar K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen Management in Agriculture. Glob Chang Biol. 2021;27(11):2343–60. https://doi.org/10.1111/gcb.15588.

Google Scholar 

Yan X, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane Emissions from Rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Glob Biogeochem Cycles. 2009;23(2):GB2002. https://doi.org/10.1029/2008GB003299.

Google Scholar 

Sander, B. O.; Wassmann, R.; Siopongco, J.; Hoanh, C. T.; Johnston, R.; Smakhtin, V. Mitigating greenhouse gas Emissions from Rice production through water-saving techniques: potential, Adoption and Empirical Evidence, Climate Change Agricultural Water Manag Develop Countries. 2015;8:193. https://doi.org/10.1079/9781780643663.0193.

Runkle BRK, Suvočarev K, Reba ML, Reavis CW, Smith SF, Chiu Y-L, et al. Methane emission reductions from the alternate wetting and drying of Rice fields detected using the Eddy covariance method. Environ Sci Technol. 2019;53(2):671–81. https://doi.org/10.1021/acs.est.8b05535.

Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nature Clim Change. 2016;6(5):452–61. https://doi.org/10.1038/nclimate2925.

Terlouw T, Bauer C, Rosa L, Mazzotti M. Life cycle assessment of carbon dioxide removal Technologies: a critical review. Energy Environ Sci. 2021;14(4):1701–21. https://doi.org/10.1039/D0EE03757E.

Google Scholar 

Northrup, D. L.; Basso, B.; Wang, M. Q.; Morgan, C. L. S.; Benfey, P. N. Novel Technologies for Emission Reduction Complement Conservation Agriculture to Achieve Negative Emissions from Row-Crop Production. PNAS. 2021;118(28). https://doi.org/10.1073/pnas.2022666118.

Nightingale AJ, Eriksen S, Taylor M, Forsyth T, Pelling M, Newsham A, et al. Beyond technical fixes: climate solutions and the great derangement. Clim Dev. 2020;12(4):343–52. https://doi.org/10.1080/17565529.2019.1624495.

Bednar J, Obersteiner M, Baklanov A, Thomson M, Wagner F, Geden O, et al. Operationalizing the net-negative carbon economy. Nature. 2021;596(7872):377–83. https://doi.org/10.1038/s41586-021-03723-9.

Caviglia-Harris, J.; Hodges, K.; Helmuth, B.; Bennett, E.; Galvin, K.; Krebs, M.; Lips, K.; Lowman, M.; Schulte, L.; Schuur, E. The Six Dimensions of Collective Leadership That Advance Sustainability Objectives: Rethinking What It Means to Be an Academic Leader. Ecol Soc. 2021;26(3). https://doi.org/10.5751/ES-12396-260309.

Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, et al. Natural Climate Solutions. PNAS. 2017:201710465. https://doi.org/10.1073/pnas.1710465114.

Nolan CJ, Field CB, Mach KJ. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat Rev Earth Environ. 2021;2(6):436–46. https://doi.org/10.1038/s43017-021-00166-8.

Google Scholar 

Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375(1794):20190120. https://doi.org/10.1098/rstb.2019.0120.

Google Scholar 

Pongratz J, Schwingshackl C, Bultan S, Obermeier W, Havermann F, Guo S. Land use effects on climate: current state, recent Progress, and emerging topics. Curr Clim Change Rep. 2021;7(4):99–120. https://doi.org/10.1007/s40641-021-00178-y.

Mori AS, Dee LE, Gonzalez A, Ohashi H, Cowles J, Wright AJ, et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat Clim Chang. 2021;11(6):543–50. https://doi.org/10.1038/s41558-021-01062-1.

Townsend J, Moola F, Craig M-K. Indigenous peoples are critical to the success of nature-based solutions to climate change. FACETS. 2020;5(1):551–6. https://doi.org/10.1139/facets-2019-0058.

Google Scholar 

DeFries R, Nagendra H. Ecosystem management as a wicked problem. Science. 2017;356(6335):265–70. https://doi.org/10.1126/science.aal1950.

Google Scholar 

Stuart BJ. Addressing the grand challenge of atmospheric carbon dioxide: geologic sequestration vs. Biological Recycling. J Biol Eng. 2011;5(1):14. https://doi.org/10.1186/1754-1611-5-14.

Google Scholar 

Gattie DK, Smith MC, Tollner EW, McCutcheon SC. The emergence of ecological engineering as a discipline. Ecol Eng. 2003;20(5):409–20. https://doi.org/10.1016/j.ecoleng.2003.08.003.

Google Scholar 

Chancellor, W. History of Changes in Technical Subject Matter of ASAE’S Periodicals: 1950-1999; ASABE paper no. 078020; ASABE: St. Joseph, MI, 2007. https://doi.org/10.13031/2013.22885.

Ting KC. Development and perspectives of agricultural engineering towards biological/Biosystems engineering. J Agricultural Eng. 2010;41(1):1–5. https://doi.org/10.4081/jae.2010.1.1.

Google Scholar 

Monier E, Xu L, Snyder R. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation. Environ Res Lett. 2016;11(5):055001. https://doi.org/10.1088/1748-9326/11/5/055001.

Google Scholar 

Leng, G. Keeping Global Warming within 1.5 °C Reduces Future Risk of Yield Loss in the United States: A Probabilistic Modeling Approach. Sci Total Environ. 2018;644:52–59. https://doi.org/10.1016/j.scitotenv.2018.06.344.

Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, et al. Climate-Smart Agriculture for Food Security. Nature Clim Change. 2014;4(12):1068–72. https://doi.org/10.1038/nclimate2437.

Giller KE, Hijbeek R, Andersson JA, Sumberg J. Regenerative Agriculture: An Agronomic Perspective. Outlook Agric. 2021;0030727021998063(1):13–25. https://doi.org/10.1177/0030727021998063.

Google Scholar 

Silva JV, Reidsma P, Baudron F, Laborte AG, Giller KE, van Ittersum MK. How sustainable is sustainable intensification? Assessing Yield Gaps at Field and Farm Level across the Globe. Global Food Security. 2021;30:100552. https://doi.org/10.1016/j.gfs.2021.100552.

Google Scholar 

Geels FW. Socio-technical transitions to sustainability: a review of criticisms and elaborations of the multi-level perspective. Curr Opin Environ Sustain. 2019;39:187–201. https://doi.org/10.1016/j.cosust.2019.06.009.

Google Scholar 

Keskin H, Grunwald S, Harris WG. Digital mapping of soil carbon fractions with machine learning. Geoderma. 2019;339:40–58. https://doi.org/10.1016/j.geoderma.2018.12.037.

Google Scholar 

Andries A, Morse S, Murphy RJ, Lynch J, Mota B, Woolliams ER. Can current earth observation Technologies provide useful information on soil organic carbon stocks for environmental land management policy? Sustainability. 2021;13(21):12074. https://doi.org/10.3390/su132112074.

Google Scholar 

de Boon A, Sandström C, Rose DC. Governing agricultural innovation: a comprehensive framework to underpin sustainable transitions. J Rural Stud. 2021;89:407–22.. https://doi.org/10.1016/j.jrurstud.2021.07.019.

Guan K, Jin Z, DeLucia EH, West P, Peng B, Tang J, et al. A Roadmap toward Scalably Quantifying Field-Level Agricultural Carbon Outcomes. eartharxiv preprint. 2022:2905. https://doi.org/10.31223/X5QW7J.

Wang, F.; Harindintwali, J. D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S. X.; Zhang, L.; Rinklebe, J.; Yuan, Z.; Zhu, Q.; Xiang, L.; Tsang, D. C. W.; Xu, L.; Jiang, X.; Liu, J.; Wei, N.; Kästner, M.; Zou, Y.; Ok, Y. S.; Shen, J.; Peng, D.; Zhang, W.; Barceló, D.; Zhou, Y.; Bai, Z.; Li, B.; Zhang, B.; Wei, K.; Cao, H.; Tan, Z.; Zhao, L.; He, X.; Zheng, J.; Bolan, N.; Liu, X.; Huang, C.; Dietmann, S.; Luo, M.; Sun, N.; Gong, J.; Gong, Y.; Brahushi, F.; Zhang, T.; Xiao, C.; Li, X.; Chen, W.; Jiao, N.; Lehmann, J.; Zhu, Y.-G.; Jin, H.; Schäffer, A.; Tiedje, J. M.; Chen, J. M. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021;2(4):100180. https://doi.org/10.1016/j.xinn.2021.100180.

Houborg R, McCabe MF. High-resolution NDVI from Planet’s constellation of earth observing Nano-satellites: a new data source for precision agriculture. Remote Sens. 2016;8(9):768. https://doi.org/10.3390/rs8090768.

Google Scholar 

Houborg R, McCabe MF. A Cubesat enabled Spatio-temporal enhancement method (CESTEM) utilizing planet, Landsat and MODIS data. Remote Sens Environ. 2018;209:211–26. https://doi.org/10.1016/j.rse.2018.02.067.

Google Scholar 

Lobell DB, Thau D, Seifert C, Engle E, Little B. A scalable satellite-based crop yield mapper. Remote Sens Environ. 2015;164:324–33. https://doi.org/10.1016/j.rse.2015.04.021.

Google Scholar 

Ziliani MG, Altaf MU, Aragon B, Houborg R, Franz TE, Lu Y, et al. Early season prediction of within-Field crop yield variability by assimilating CubeSat data into a crop model. Agric For Meteorol. 2022;313:108736. https://doi.org/10.1016/j.agrformet.2021.108736.

Gerhards M, Schlerf M, Mallick K, Udelhoven T. Challenges and future perspectives of multi−/hyperspectral thermal infrared remote sensing for crop water-stress detection: a review. Remote Sens. 2019;11(10):1240. https://doi.org/10.3390/rs11101240.

Google Scholar 

Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: a review. Remote Sens. 2020;12(19):3136. https://doi.org/10.3390/rs12193136.

Google Scholar 

Baldocchi, D. D. Assessing the Eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, Present and Future. Global Change Biol. 2003;9(4):479–2. https://doi.org/10.1046/j.1365-2486.2003.00629.x.

Hemes KS, Runkle BRK, Novick KA, Baldocchi DD, Field CB. An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environ Sci Technol. 2021;55(6):3494–504. https://doi.org/10.1021/acs.est.0c06421.

MacBean N, Maignan F, Bacour C, Lewis P, Peylin P, Guanter L, et al. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Sci Rep. 2018;8(1):1973. https://doi.org/10.1038/s41598-018-20024-w.

Gu L, Wood JD, Chang CY-Y, Sun Y, Riggs JS. Advancing terrestrial ecosystem science with a novel automated measurement system for Sun-induced chlorophyll fluorescence for integration with Eddy covariance flux networks. Journal of Geophysical Research: Biogeosciences. 2019;124(1):127–46. https://doi.org/10.1029/2018JG004742.

Google Scholar 

Metzger S, Durden D, Paleri S, Sühring M, Butterworth BJ, Florian C, et al. Novel approach to observing system simulation experiments improves information gain of surface–atmosphere Field measurements. Atmospheric Measurement Techniques. 2021;14(11):6929–54. https://doi.org/10.5194/amt-14-6929-2021.

Brown ME, Ihli M, Hendrick O, Delgado-Arias S, Escobar VM, Griffith P. Social network and content analysis of the north American carbon program as a scientific Community of Practice. Soc Networks. 2016;44:226–37. https://doi.org/10.1016/j.socnet.2015.10.002.

Google Scholar 

Runkle, B. R. K.; Rigby, J. R.; Reba, M. L.; Anapalli, S. S.; Bhattacharjee, J.; Krauss, K. W.; Liang, L.; Locke, M. A.; Novick, K. A.; Sui, R.; Suvočarev, K.; White, P. M. Delta-Flux: An Eddy Covariance Network for a Climate-Smart Lower Mississippi Basin. Agricultural & Environ Letters. 2017;2(1):170003(1–5). https://doi.org/10.2134/ael2017.01.0003.

Novick KA, Biederman JA, Desai AR, Litvak ME, Moore DJP, Scott RL, et al. The AmeriFlux network: a Coalition of the Willing. Agric For Meteorol. 2018;249:444–56. https://doi.org/10.1016/j.agrformet.2017.10.009.

Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; Baldocchi, D.; Bitelli, M.; Blöschl, G.; Bogena, H.; Brocca, L.; Calvet, J.-C.; Camarero, J. J.; Capello, G.; Choi, M.; Cosh, M. C.; van de Giesen, N.; Hajdu, I.; Ikonen, J.; Jensen, K. H.; Kanniah, K. D.; de Kat, I.; Kirchengast, G.; Kumar Rai, P.; Kyrouac, J.; Larson, K.; Liu, S.; Loew, A.; Moghaddam, M.; Martínez Fernández, J.; Mattar Bader, C.; Morbidelli, R.; Musial, J. P.; Osenga, E.; Palecki, M. A.; Pellarin, T.; Petropoulos, G. P.; Pfeil, I.; Powers, J.; Robock, A.; Rüdiger, C.; Rummel, U.; Strobel, M.; Su, Z.; Sullivan, R.; Tagesson, T.; Varlagin, A.; Vreugdenhil, M.; Walker, J.; Wen, J.; Wenger, F.; Wigneron, J. P.; Woods, M.; Yang, K.; Zeng, Y.; Zhang, X.; Zreda, M.; Dietrich, S.; Gruber, A.; van Oevelen, P.; Wagner, W.; Scipal, K.; Drusch, M.; Sabia, R. The International Soil Moisture Network: Serving Earth System Science for over a Decade. Hydrol Earth Syst Sci. 2021;25(11):5749–804. https://doi.org/10.5194/hess-25-5749-2021.

Yamaguchi T, Tanaka Y, Imachi Y, Yamashita M, Katsura K. Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in Rice. Remote Sens. 2021;13(1):84. https://doi.org/10.3390/rs13010084.

Google Scholar 

Campos-Taberner M, García-Haro FJ, Busetto L, Ranghetti L, Martínez B, Gilabert MA, et al. A critical comparison of remote sensing leaf area index estimates over Rice-cultivated areas: from Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT polar system. Remote Sens. 2018;10(5):763. https://doi.org/10.3390/rs10050763.

Boschetti, M.; Busetto, L.; Ranghetti, L.; Haro, J. G.; Campos-Taberner, M.; Confalonieri, R. Testing Multi-Sensors Time Series of Lai Estimates to Monitor Rice Phenology: Preliminary Results. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium; 2018; pp 8221–8224. https://doi.org/10.1109/IGARSS.2018.8518494.

Li Z-L, Leng P, Zhou C, Chen K-S, Zhou F-C, Shang G-F. Soil moisture retrieval from remote sensing measurements: current knowledge and directions for the future. Earth Sci Rev. 2021;218:103673. https://doi.org/10.1016/j.earscirev.2021.103673.

Google Scholar 

Falloon P, Jones CD, Ades M, Paul K. Direct soil moisture controls of future global soil carbon changes: an important source of uncertainty. Glob Biogeochem Cycles. 2011;25(3):14 PP. https://doi.org/201110.1029/2010GB003938.

Evans AE, Limmer MA, Seyfferth AL. Indicator of redox in soil (IRIS) films as a water management tool for Rice farmers. J Environ Manag. 2021;294:112920. https://doi.org/10.1016/j.jenvman.2021.112920.

Google Scholar 

Limmer MA, Evans AE, Seyfferth AL. The IRIS imager: a freeware program for quantification of paint removal on IRIS films. Soil Sci Soc Am J. 2021;85(6):2210–9. https://doi.org/10.1002/saj2.20308.

Google Scholar 

Arulnathan V, Heidari MD, Doyon M, Li E, Pelletier N. Farm-level decision support tools: a review of methodological choices and their consistency with principles of sustainability assessment. J Clean Prod. 2020;256:120410. https://doi.org/10.1016/j.jclepro.2020.120410.

Google Scholar 

Moreno-García B, Coronel E, Reavis CW, Suvočarev K, Runkle BRK. Environmental sustainability assessment of Rice management practices using decision support tools. J Clean Prod. 2021;315:128135. https://doi.org/10.1016/j.jclepro.2021.128135.

Google Scholar 

Sarabi S, Han Q, de Vries B, Romme AGL. The nature-based solutions planning support system: a playground for site and solution prioritization. Sustain Cities Soc. 2022;78:103608. https://doi.org/10.1016/j.scs.2021.103608.

Google Scholar 

Thomson, A.; Ehiemere, C.; Carlson, J.; Matlock, M.; Barnes, E.; Moody, L.; DeGeus, D. Defining Sustainability as Measurable Improvement in the Environment: Lessons from a Supply Chain Program for Agriculture in the United States. In Sustainability Perspectives: Science, Policy and Practice: A Global View of Theories, Policies and Practice in Sustainable Development; Khaiter, P. A., Erechtchoukova, M. G., Eds.; Strategies for Sustainability; Springer International Publishing: Cham, 2020; pp 133–153. https://doi.org/10.1007/978-3-030-19550-2_7.

Horton P, Long SP, Smith P, Banwart SA, Beerling DJ. Technologies to deliver food and climate security through agriculture. Nat Plants. 2021;7(3):250–5. https://doi.org/10.1038/s41477-021-00877-2.

Google Scholar 

Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017;15(3):e2001793. https://doi.org/10.1371/journal.pbio.2001793.

Ray P, Lakshmanan V, Labbé JL, Craven KD. Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.622926.

Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 2012;48(5):489–99. https://doi.org/10.1007/s00374-012-0691-4.

Google Scholar 

Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28(8):2405–29 https://doi.org/10.1007/s10531-019-01760-5.

Kumawat KC, Razdan N, Saharan K. Rhizospheric microbiome: bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res. 2022;254:126901. https://doi.org/10.1016/j.micres.2021.126901.

Google Scholar 

Jones JW, Verma BP, Nokes S, Verma L, Zazueta F, Rider A. Toward circular food and agricultural systems. Resource Magazine. 2020;27(3):15–7.

Google Scholar 

Verma, B.; Jones, J. Last Word From Linear to Circular, An Ambitious but Necessary Goal. Resource Magazine. ASABE: St. Joseph, 2021, pp. 38–39.

Buchmann-Duck J, Beazley KF. An urgent call for circular economy advocates to acknowledge its limitations in conserving biodiversity. Sci Total Environ. 2020;727:138602. https://doi.org/10.1016/j.scitotenv.2020.138602.

Google Scholar 

Priyadarshini P, Abhilash PC. Fostering sustainable land restoration through circular economy-governed transitions. Restor Ecol. 2020;28(4):719–23. https://doi.org/10.1111/rec.13181.

Google Scholar 

Jacobson MJ. Problem Solving, Cognition, and complex systems: differences between experts and novices. Complexity. 2001;6(3):41–9. https://doi.org/10.1002/cplx.1027.

Google Scholar 

Stegmann, P.; Londo, M.; Junginger, M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resources, Conservation & Recycling: X. 2020;6:100029. https://doi.org/10.1016/j.rcrx.2019.100029.

Khatri-Chhetri A, Sapkota TB, Sander BO, Arango J, Nelson KM, Wilkes A. Financing climate change mitigation in agriculture: assessment of investment cases. Environ Res Lett. 2021;16(12):124044. https://doi.org/10.1088/1748-9326/ac3605.

Google Scholar 

Huybrechs F, Bastiaensen J, Van Hecken G. Exploring the potential contribution of green microfinance in transformations to sustainability. Curr Opin Environ Sustain. 2019;41:85–92. https://doi.org/10.1016/j.cosust.2019.11.001.

Google Scholar 

Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; Fricko, O.; Frischmann, C.; Funk, J.; Grassi, G.; Griscom, B.; Havlik, P.; Hanssen, S.; Humpenöder, F.; Landholm, D.; Lomax, G.; Lehmann, J.; Mesnildrey, L.; Nabuurs, G.-J.; Popp, A.; Rivard, C.; Sanderman, J.; Sohngen, B.; Smith, P.; Stehfest, E.; Woolf, D.; Lawrence, D. Land-Based Measures to Mitigate Climate Change: Potential and Feasibility by Country. Global Change Biol. 2021;27(23):6025–6058. https://doi.org/10.1111/gcb.15873.

Clark M, Tilman D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett. 2017;12(6):064016. https://doi.org/10.1088/1748-932

留言 (0)

沒有登入
gif