Validation of desk-based audits using Google Street View® to monitor the obesogenic potential of neighbourhoods in a pediatric sample: a pilot study in the QUALITY cohort

Roberts KC, Shields M, de Groh M, Aziz A, Gilbert JA. Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health Rep. 2012;23(3):37–41.

PubMed  Google Scholar 

van der Klaauw AA, Farooqi IS. The Hunger Genes: Pathways to Obesity. Cell. 2015;161(1):119–32.

PubMed  Google Scholar 

Bleich SN, Segal J, Wu Y, Wilson R, Wang Y. Systematic review of community-based childhood obesity prevention studies. Pediatrics. 2013;132(1):e201–10.

PubMed  PubMed Central  Google Scholar 

Showell NN, Fawole O, Segal J, Wilson RF, Cheskin LJ, Bleich SN, et al. A systematic review of home-based childhood obesity prevention studies. Pediatrics. 2013;132(1):e193-200.

PubMed  PubMed Central  Google Scholar 

Oliver M, Mavoa S, Badland H, Parker K, Donovan P, Kearns RA, et al. Associations between the neighbourhood built environment and out of school physical activity and active travel: an examination from the Kids in the City study. Health Place. 2015;36:57–64.

PubMed  Google Scholar 

Laxer RE, Janssen I. The proportion of youths’ physical inactivity attributable to neighbourhood built environment features. Int J Health Geogr. 2013;12:31.

PubMed  PubMed Central  Google Scholar 

Kligerman M, Sallis JF, Ryan S, Frank LD, Nader PR. Association of neighborhood design and recreation environment variables with physical activity and body mass index in adolescents. Am J Health Promot. 2007;21(4):274–7.

PubMed  Google Scholar 

Mecredy G, Pickett W, Janssen I. Street connectivity is negatively associated with physical activity in Canadian youth. Int J Environ Res Public Health. 2011;8(8):3333–50.

PubMed  PubMed Central  Google Scholar 

Carver A, Timperio AF, Crawford DA. Neighborhood road environments and physical activity among youth: the CLAN study. J Urban Health. 2008;85(4):532–44.

PubMed  PubMed Central  Google Scholar 

Gardsjord HS, Tveit MS, Nordh H. Promoting youth’s physical activity through park design: linking theory and practice in a public health perspective. Landsc Res. 2014;39(1):70–81.

Google Scholar 

Hsieh S, Klassen AC, Curriero FC, Caulfield LE, Cheskin LJ, Davis JN, et al. Built environment associations with adiposity parameters among overweight and obese hispanic youth. Prev Med Rep. 2015;2:406–12.

PubMed  PubMed Central  Google Scholar 

Powell LM, Chaloupka FJ, Slater SJ, Johnston LD, O’Malley PM. The availability of local-area commercial physical activity-related facilities and physical activity among adolescents. Am J Prev Med. 2007;33(4 Suppl):S292-300.

PubMed  Google Scholar 

Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, et al. Systematic literature review of built environment effects on physical activity and active transport—an update and new findings on health equity. Int J Behav Nutr Phys Act. 2017;14:158.

PubMed  PubMed Central  Google Scholar 

Timperio A, Jeffery RW, Crawford D, Roberts R, Giles-Corti B, Ball K. Neighbourhood physical activity environments and adiposity in children and mothers: a three-year longitudinal study. Int J Behav Nutr Phys Act. 2010;7:18.

PubMed  PubMed Central  Google Scholar 

Bell J, Wilson JS, Liu GC. Neighborhood greenness and 2-Year changes in body mass index of children and youth. Am J Prev Med. 2008;35(6):547–53.

PubMed  PubMed Central  Google Scholar 

Sanders T, Feng X, Fahey PP, Lonsdale C, Astell-Burt T. Green Space and child weight status: does outcome measurement matter? Evidence from an Australian longitudinal study. J Obes. 2015;2015:194838.

PubMed  PubMed Central  Google Scholar 

Morgan Hughey S, Kaczynski AT, Child S, Moore JB, Porter D, Hibbert J. Green and lean: Is neighborhood park and playground availability associated with youth obesity? Variations by gender, socioeconomic status, and race/ethnicity. Prev Med. 2017;95(Suppl):S101–8.

PubMed  Google Scholar 

Grafova IB. Overweight children: assessing the contribution of the built environment. Prev Med. 2008;47(3):304–8.

PubMed  Google Scholar 

Cohen DA, Han B, Isacoff J, Shulaker B, Williamson S, Marsh T, et al. Impact of park renovations on park use and park-based physical activity. J Phys Act Health. 2015;12(2):289–95.

PubMed  Google Scholar 

Vanwolleghem G, Van Dyck D, Ducheyne F, De Bourdeaudhuij I, Cardon G. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google Street View-based audit. Int J Health Geogr. 2014;13:19.

PubMed  PubMed Central  Google Scholar 

Van Hulst A, Gauvin L, Kestens Y, Barnett TA. Neighborhood built and social environment characteristics: a multilevel analysis of associations with obesity among children and their parents. Int J Obes. 2013;37(10):1328–35.

Google Scholar 

Gauvin L, Richard L, Craig CL, Spivock M, Riva M, Forster M, et al. From walkability to active living potential: an “ecometric” validation study. Am J Prev Med. 2005;28(2 Suppl 2):126–33.

PubMed  Google Scholar 

Mujahid MS, Diez Roux AV, Morenoff JD, Raghunathan T. Assessing the measurement properties of neighborhood scales: from psychometrics to ecometrics. Am J Epidemiol. 2007;165(8):858–67.

PubMed  Google Scholar 

Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the built environment for physical activity: state of the science. Am J Prev Med. 2009;36(4 Suppl):S99-123.e12.

PubMed  PubMed Central  Google Scholar 

Charreire H, Mackenbach JD, Ouasti M, Lakerveld J, Compernolle S, Ben-Rebah M, et al. Using remote sensing to define environmental characteristics related to physical activity and dietary behaviours: a systematic review (the SPOTLIGHT project). Health Place. 2014;25:1–9.

CAS  PubMed  Google Scholar 

Steinmetz-Wood M, Velauthapillai K, O’Brien G, Ross NA. Assessing the micro-scale environment using Google Street View: the Virtual Systematic Tool for Evaluating Pedestrian Streetscapes (Virtual-STEPS). BMC Public Health. 2019;19(1):1246.

PubMed  PubMed Central  Google Scholar 

Bethlehem JR, Mackenbach JD, Ben-Rebah M, Compernolle S, Glonti K, Bardos H, et al. The SPOTLIGHT virtual audit tool: a valid and reliable tool to assess obesogenic characteristics of the built environment. Int J Health Geogr. 2014;13:52.

PubMed  PubMed Central  Google Scholar 

Griew P, Hillsdon M, Foster C, Coombes E, Jones A, Wilkinson P. Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity. Int J Behav Nutr Phys Act. 2013;10:103.

PubMed  PubMed Central  Google Scholar 

Clarke P, Ailshire J, Melendez R, Bader M, Morenoff J. Using Google Earth to conduct a neighborhood audit: reliability of a virtual audit instrument. Health Place. 2010;16(6):1224–9.

PubMed  PubMed Central  Google Scholar 

Rundle AG, Bader MDM, Richards CA, Neckerman KM, Teitler JO. Using Google street view to audit neighborhood environments. Am J Prev Med. 2011;40(1):94–100.

PubMed  PubMed Central  Google Scholar 

Badland HM, Opit S, Witten K, Kearns RA, Mavoa S. Can virtual streetscape audits reliably replace physical streetscape audits? J Urban Health. 2010;87(6):1007–16.

PubMed  PubMed Central  Google Scholar 

Ben-Joseph E, Lee JS, Cromley EK, Laden F, Troped PJ. Virtual and actual: relative accuracy of on-site and web-based instruments in auditing the environment for physical activity. Health Place. 2013;19:138–50.

PubMed  Google Scholar 

Odgers CL, Caspi A, Bates CJ, Sampson RJ, Moffitt TE. Systematic social observation of children’s neighborhoods using Google Street View: a reliable and cost-effective method. J Child Psychol Psychiatry. 2012;53(10):1009–17.

PubMed  PubMed Central  Google Scholar 

Phillips CB, Engelberg JK, Geremia CM, Zhu W, Kurka JM, Cain KL, et al. Online versus in-person comparison of Microscale Audit of Pedestrian Streetscapes (MAPS) assessments: reliability of alternate methods. Int J Health Geogr. 2017;16(1):27.

PubMed  PubMed Central  Google Scholar 

Kelly CM, Wilson JS, Baker EA, Miller DK, Schootman M. Using Google Street View to audit the built environment: inter-rater reliability results. Ann Behav Med. 2013;45(Suppl 1):S108–12.

PubMed  Google Scholar 

Wilson JS, Kelly CM, Schootman M, Baker EA, Banerjee A, Clennin M, et al. Assessing the built environment using omnidirectional imagery. Am J Prev Med. 2012;42(2):193–9.

PubMed  PubMed Central  Google Scholar 

Mooney SJ, Bader MD, Lovasi GS, Neckerman KM, Teitler JO, Rundle AG. Validity of an ecometric neighborhood physical disorder measure constructed by virtual street audit. Am J Epidemiol. 2014;180(6):626–35.

PubMed  PubMed Central  Google Scholar 

Mooney SJ, Bader MDM, Lovasi GS, Teitler JO, Koenen KC, Aiello AE, et al. Street audits to measure neighborhood disorder: virtual or in-person? Am J Epidemiol. 2017;186(3):265–73.

PubMed  PubMed Central  Google Scholar 

Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organization technical report series. 1995;854:1–452.

Lambert M, Van Hulst A, O’Loughlin J, Tremblay A, Barnett TA, Charron H, et al. Cohort profile: the Quebec adipose and lifestyle investigation in youth cohort. Int J Epidemiol. 2012;41(6):1533–44.

PubMed  Google Scholar 

Daniel M, Y K. MEGAPHONE: Montreal Epidemiological and Geographical Analysis of Population Health Outcomes and Neighbourhood Effects (fully relational, semi-automated geographic information system integrating extensive inventories of social/physical environmental exposure and health outcomes data). In: Montréal CdrdChdlUd, editor. Montreal, Canada2007.

Paquet C, Cargo M, Kestens Y, Daniel M. Reliability of an instrument for direct observation of urban neighbourhoods. Landsc Urban Plan. 2010;97:194–201.

Google Scholar 

Paquet C, Cargo M, Kestens Y, Daniel M. Reliability of an instrument for direct observation of urban neighbourhoods. Landsc Urban Plan. 2010;97(3):194–201.

Google Scholar 

Hoehner CM, Ivy A, Ramirez LK, Handy S, Brownson RC. Active neighborhood checklist: a user-friendly and reliable tool for assessing activity friendliness. Am J Health Prom. 2007;21(6):534–7.

Google Scholar 

Pikora TJ, Bull FC, Jamrozik K, Knuiman M, Giles-Corti B, Donovan RJ. Developing a reliable audit instrument to measure the physical environment for physical activity. Am J Prev Med. 2002;23(3):187–94.

PubMed  Google Scholar 

QUebec Adipose and Lifestyle InvesTigation in Youth Montréal: Centre de recherche du CHU Sainte-Justine; 2009 [updated 2017/08/30. http://www.etudequalitystudy.ca.

Barnett TA, Ghenadenik AE, Van Hulst A, Contreras G, Kestens Y, Chaix B, et al. Neighborhood built environment typologies and adiposity in children and adolescents. Int J Obes. 2021.

Pontius RG, Millones M. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens. 2011;32(15):4407–29.

Google Scholar 

Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005;85(3):257–68.

PubMed  Google Scholar 

Aghaabbasi M, Moeinaddini M, Shah MZ, Asadi-Shekari Z. Addressing issues in the use of Google tools for assessing pedestrian built environments. J Transp Geogr. 2018;73:185–98.

Google Scholar 

Fleiss JL, Levin B, Cho PM. Statistical Methods for Rates and Proportions. 3rd ed. New York: Wiley; 2003.

Google Scholar 

Barlow W. Modeling of Categorical Agreement. In: Armitage P, Colton T, editors. The Encyclopedia of Biostatistics. New York: Wiley; 1998. p. 541–5.

留言 (0)

沒有登入
gif