A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds

Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12(11):1824. https://doi.org/10.3390/ma12111824.

Article  Google Scholar 

Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6(suppl_3):S311–24.

Google Scholar 

Karkan SF, et al. Electrospun polyurethane/poly (ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions. Microvasc Res. 2021;133:104073.

Google Scholar 

Chan XY, et al. Human pluripotent stem cells to engineer blood vessels, in Engineering and Application of Pluripotent Stem Cells. Springer; 2017. p. 147–68.

Google Scholar 

Edgar LT, et al. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J Biomech Eng. 2014;136(2):021001.

Google Scholar 

Fathi Karkan S. S. Davaran, and A. Akbarzadeh, cisplatinReaction engineering of step growth polymerization-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. Nanomedicine Res J. 2019;4(4):209–19.

Crescentini TM, et al. Mass spectrometry of polyurethanes. Polymer. 2019;181:121624.

Google Scholar 

Gupta SK, Kumar A. Reaction engineering of step growth polymerization. New York: Springer Science & Business Media; 2012.

Sonnenschein MF, Lysenko Z, Brune DA, Wendt BL, Schrock AK. Enhancing polyurethane properties via soft segment crystallization. Polymer. 2005;46(23):10158–66. https://doi.org/10.1016/j.polymer.2005.08.006.

Article  Google Scholar 

He W, et al. The preparation and performance of a new polyurethane vascular prosthesis. Cell Biochem Biophys. 2013;66(3):855–66.

Google Scholar 

Prisacariu C. Polyurethane elastomers: from morphology to mechanical aspects 2011. Vienna: Springer Vienna; 2011.

Google Scholar 

Kurtz S, Siskey R, Reitman M. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components. J Biomed Mater Res B Appl Biomater. 2010;93(2):442–7. https://doi.org/10.1002/jbm.b.31601.

Article  Google Scholar 

Gunatillake PA, Martin DJ, Meijs GF, McCarthy SJ, Adhikari R. Designing biostable polyurethane elastomers for biomedical implants. Aust J Chem. 2003;56(6):545–57. https://doi.org/10.1071/CH02168.

Article  Google Scholar 

Amani H, et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces. 2019;6(13):1900572.

Google Scholar 

Hutmacher, D.W., M. Sittinger, And M.V.J.T.i.B. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems 2004. 22(7): p. 354–362.

Zheng H, et al. Deconstruction of heterogeneity of size-dependent exosome subpopulations from human urine by profiling N-glycoproteomics and phosphoproteomics simultaneously. Anal Chem. 2020;92(13):9239–46.

Google Scholar 

Karkan SF, Davaran S, Rahbarghazi R, Salehi R, Akbarzadeh A. Electrospun nanofibers for the fabrication of engineered vascular grafts. J Biol Eng. 2019;13(1):83. https://doi.org/10.1186/s13036-019-0199-7.

Article  Google Scholar 

Toong DWY, et al. Bioresorbable polymeric scaffold in cardiovascular applications. Int J Mol Sci. 2020;21(10):3444.

Google Scholar 

Ye H, et al. Polyester elastomers for soft tissue engineering. Chem Soc Rev. 2018;47(12):4545–80.

Google Scholar 

Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface Biotribol. 2015;1(3):161–76. https://doi.org/10.1016/j.bsbt.2015.08.002.

Article  Google Scholar 

Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.

Google Scholar 

Konig G, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials. 2009;30(8):1542–50.

Google Scholar 

Koike N, et al. Creation of long-lasting blood vessels. Nature. 2004;428(6979):138–9.

Google Scholar 

Mi H-Y, Jiang Y, Jing X, Enriquez E, Li H, Li Q, et al. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater Sci Eng C. 2019;98:241–9. https://doi.org/10.1016/j.msec.2018.12.126.

Article  Google Scholar 

Nottelet B, Pektok E, Mandracchia D, Tille JC, Walpoth B, Gurny R, et al. Factorial design optimization and in vivo feasibility of poly (ε-caprolactone)-micro-and nanofiber-based small diameter vascular grafts. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomateri. 2009;89(4):865–75. https://doi.org/10.1002/jbm.a.32023.

Article  Google Scholar 

Song Y, et al. Flexible and elastic porous poly (trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater. 2010;6(4):1269–77.

Google Scholar 

Shitole AA, et al. Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds. J Biomater Appl. 2019;33(10):1327–47.

Google Scholar 

Mi H-Y, Jing X, Jacques BR, Turng LS, Peng XF. Characterization and properties of electrospun thermoplastic polyurethane blend fibers: effect of solution rheological properties on fiber formation. J Mater Res. 2013;28(17):2339–50. https://doi.org/10.1557/jmr.2013.115.

Article  Google Scholar 

Moore NM, et al. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater. 2011;7(5):2091–100.

Google Scholar 

Sobral JM, et al. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011;7(3):1009–18.

Google Scholar 

Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31(8):2163–75. https://doi.org/10.1016/j.biomaterials.2009.11.083.

Article  Google Scholar 

Li Y, et al. Blood-compatible polyaniline coated electrospun polyurethane fiber scaffolds for enhanced adhesion and proliferation of human umbilical vein endothelial cells. Fibers Polymers. 2019;20(2):250–60.

Google Scholar 

Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27(7):1088–94. https://doi.org/10.1016/j.biomaterials.2005.07.048.

Article  Google Scholar 

Mi H-Y, et al. Approaches to fabricating multiple-layered vascular scaffolds using hybrid electrospinning and thermally induced phase separation methods. Ind Eng Chem Res. 2016;55(4):882–92.

Google Scholar 

Wu H, et al. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med. 2010;21(12):3207–15.

Google Scholar 

Xu C, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877–86.

Google Scholar 

Ahmed M, et al. Geometric constraints of endothelial cell migration on electrospun fibres. Sci Rep. 2018;8(1):1–10.

Google Scholar 

Moon JJ, et al. Micropatterning of poly (ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A. 2009;15(3):579–85.

Google Scholar 

Yu E, et al. Fabrication and characterization of electrospun thermoplastic polyurethane/fibroin small-diameter vascular grafts for vascular tissue engineering. Int Polym Process. 2016;31(5):638–46.

Google Scholar 

Adipurnama I, et al. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2017;5(1):22–37.

Google Scholar 

Boretos JW, Pierce WS. Segmented polyurethane: a polyether polymer. An initial evalution for biomedical applications. J Biomed Mater Res. 1968;2(1):121–30.

Google Scholar 

Tondnevis F, Keshvari H, Mohandesi JA. Physico-mechanical and in vitro characterization of electrically conductive electrospun nanofibers of poly urethane/single walled carbon nano tube by great endothelial cells adhesion for vascular tissue engineering. J Polym Res. 2019;26(11):256.

Google Scholar 

Lu G, et al. Rheology and extrusion of medical-grade thermoplastic polyurethane. Polym Eng Sci. 2003;43(12):1863–77.

Google Scholar 

Takanari K, et al. Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials. 2017;113:31–41.

Google Scholar 

Zhang L, Feng Y. Bibliometrics and visualization analysis of artificial blood vessel research. Curr Sci. 2014:816–22.

Boffito M, Sartori S, Ciardelli G. Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int. 2014;63(1):2–11.

Google Scholar 

Zhang X, et al. Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments, in Advances in polyurethane biomaterials. Amsterdam: Elsevier; 2016. p. 75–114.

Davoudi P, Assadpour S, Derakhshan MA, Ai J, Solouk A, Ghanbari H. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: a promising approach towards stable endothelial lining. Mater Sci Eng C. 2017;80:213–21. https://doi.org/10.1016/j.msec.2017.05.140.

Article  Google Scholar 

Khodadoust M, Mohebbi-Kalhori D, Jirofti N. Fabrication and characterization of electrospun bi-hybrid PU/PET scaffolds for small-diameter vascular grafts applications. Cardiovasc Eng Technol. 2018;9(1):73–83.

Google Scholar 

Yu E, et al. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res A. 2018;106(4):985–96.

Google Scholar 

Mostafavi F, Golshan Ebrahimi N. Physical characterization and rheological behavior of polyurethane/poly (ϵ-caprolactone) blends, prepared by solution blending using dimethylacetamide. J Appl Polym Sci. 2012;125(5):4091–9. https://doi.org/10.1002/app.33947.

Article  Google Scholar 

Ansari M, Golzar M, Baghani M, Soleimani M. Shape memory characterization of poly (ε-caprolactone)(PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent. Polym Test. 2018;68:424–32. https://doi.org/10.1016/j.polymertesting.2018.04.032.

Article  Google Scholar 

Nguyen T-H, et al. A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. J Biomater Sci Polym Ed. 2013;24(14):1692–706.

Google Scholar 

Ren X, et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015;44(15):5680–742.

Google Scholar 

Christenson EM, et al. Poly (carbonate urethane) and poly (ether urethane) biodegradation: in vivo studies. J Biomedi Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2004;69(3):407–16.

Google Scholar 

Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg. 2003;37(2):472–80.

Google Scholar 

Hashizume R, et al. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials. 2013;34(30):7353–63.

Google Scholar 

Sharifpoor S, et al. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials. 2011;32(21):4816–29.

Google Scholar 

Ye S-H, et al. Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content. ACS Appl Mater Interfaces. 2014;6(24):22796–806.

Google Scholar 

Li Q, Mu L, Zhang F, Mo Z, Jin C, Qi W. Manufacture and property research of heparin grafted electrospinning PCU artificial vascular scaffolds. Mater Sci Eng C. 2017;78:854–61. https://doi.org/10.1016/j.msec.2017.04.148.

Article  Google Scholar 

Gostev, A.A., et al., In vivo stability of polyurethane-based electrospun vascular grafts in terms of chemistry and mechanics. Polymers. 2020;12(4):845.

Zhang H. Surface characterization techniques for polyurethane biomaterials, in Advances in polyurethane biomaterials. Amsterdam: Elsevier; 2016. p. 23–73.

Liu S, et al. Bilayered vascular grafts based on silk proteins. Acta Biomater. 2013;9(11):8991–9003.

Google Scholar 

Esmaeili S, et al. An artificial blood vessel fabricated by 3D printing for pharmaceutical application. Nanomed J. 2019;6(3):183–94.

MathSciNet  Google Scholar 

Mi H-Y, et al. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector. J Mech Behav Biomed Mater. 2018;78:433–41.

Google Scholar 

Jing X, et al. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater Sci Eng C. 2015;49:40–50.

Google Scholar 

Seifalian AM, et al. In vivo biostability of a poly (carbonate-urea) urethane graft. Biomaterials. 2003;24(14):2549–57.

Google Scholar 

Ahmed M, Hamilton G, Seifalian AM. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials. 2014;35(33):9033–40.

Google Scholar 

Zhang J, Doll BA, Beckman EJ, Hollinger JO. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. J Biomed Mater Res Part A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2003;67(2):389–400.

留言 (0)

沒有登入
gif