In vivo dissection of Rhoa function in vascular development using zebrafish

Hu X, De Silva TM, Chen J, Faraci FM (2017) Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res 120(3):449–471. https://doi.org/10.1161/CIRCRESAHA.116.308427

CAS  Article  PubMed  PubMed Central  Google Scholar 

Radeva MY, Waschke J (2018) Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf). https://doi.org/10.1111/apha.12860

Article  Google Scholar 

Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514. https://doi.org/10.1038/nrm2927

CAS  Article  PubMed  Google Scholar 

van Buul JD, Timmerman I (2016) Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions. Small GTPases 7(1):21–31. https://doi.org/10.1080/21541248.2015.1131802

CAS  Article  PubMed  PubMed Central  Google Scholar 

Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103(1):40–55. https://doi.org/10.1160/TH09-06-0403

CAS  Article  PubMed  Google Scholar 

Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39(4–5):187–199. https://doi.org/10.1016/s1537-1891(03)00008-9

CAS  Article  PubMed  Google Scholar 

Barlow HR, Cleaver O (2019) Building blood vessels-one Rho GTPase at a time. Cells 8:6. https://doi.org/10.3390/cells8060545

CAS  Article  Google Scholar 

Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4(1):77–81

CAS  Article  Google Scholar 

Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275(5304):1308–1311

CAS  Article  Google Scholar 

Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. https://doi.org/10.1146/annurev.cellbio.21.020604.150721

CAS  Article  PubMed  Google Scholar 

Yao L, Romero MJ, Toque HA, Yang G, Caldwell RB, Caldwell RW (2010) The role of RhoA/Rho kinase pathway in endothelial dysfunction. J Cardiovasc Dis Res 1(4):165–170. https://doi.org/10.4103/0975-3583.74258

Article  PubMed  PubMed Central  Google Scholar 

Shih YP, Yuan SY, Lo SH (2017) Down-regulation of DLC1 in endothelial cells compromises the angiogenesis process. Cancer Lett 398:46–51. https://doi.org/10.1016/j.canlet.2017.04.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

El Atat O, Fakih A, El-Sibai M (2019) RHOG activates RAC1 through CDC42 leading to tube formation in vascular endothelial cells. Cells. https://doi.org/10.3390/cells8020171

Article  PubMed  PubMed Central  Google Scholar 

Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115(Pt 6):1123–1136

CAS  Article  Google Scholar 

Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac JP, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24(9):3186–3195. https://doi.org/10.1096/fj.09-145102

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399

CAS  Article  Google Scholar 

Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J, Hruska KA (2001) Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 269(1):73–87. https://doi.org/10.1006/excr.2001.5295

CAS  Article  PubMed  Google Scholar 

Pronk MCA, van Bezu JSM, van Nieuw Amerongen GP, van Hinsbergh VWM, Hordijk PL (2017) RhoA, RhoB and RhoC differentially regulate endothelial barrier function. Small GTPases. https://doi.org/10.1080/21541248.2017.1339767

Article  PubMed  PubMed Central  Google Scholar 

van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW (2003) Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23(2):211–217

Article  Google Scholar 

van Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, van Hinsbergh VW (2000) Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 87(4):335–340

Article  Google Scholar 

Oldenburg J, de Rooij J (2014) Mechanical control of the endothelial barrier. Cell Tissue Res 355(3):545–555. https://doi.org/10.1007/s00441-013-1792-6

CAS  Article  PubMed  Google Scholar 

Gavard J, Patel V, Gutkind JS (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14(1):25–36. https://doi.org/10.1016/j.devcel.2007.10.019

CAS  Article  PubMed  Google Scholar 

Xu M, Waters CL, Hu C, Wysolmerski RB, Vincent PA, Minnear FL (2007) Sphingosine 1-phosphate rapidly increases endothelial barrier function independently of VE-cadherin but requires cell spreading and Rho kinase. Am J Physiol Cell Physiol 293(4):C1309-1318. https://doi.org/10.1152/ajpcell.00014.2007

CAS  Article  PubMed  Google Scholar 

Zhang XE, Adderley SP, Breslin JW (2016) Activation of RhoA, but not Rac1, mediates early stages of S1P-induced endothelial barrier enhancement. PLoS ONE 11(5):e0155490. https://doi.org/10.1371/journal.pone.0155490

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pedersen E, Brakebusch C (2012) Rho GTPase function in development: how in vivo models change our view. Exp Cell Res 318(14):1779–1787. https://doi.org/10.1016/j.yexcr.2012.05.004

CAS  Article  PubMed  Google Scholar 

Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102(44):15895–15900. https://doi.org/10.1073/pnas.0506041102

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304(1):40–49. https://doi.org/10.1016/j.yexcr.2004.11.001

CAS  Article  PubMed  Google Scholar 

Yamazaki Y, Kanekiyo T (2017) Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci 18:9. https://doi.org/10.3390/ijms18091965

CAS  Article  Google Scholar 

Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, Mabray MC, Vigil C, Tang AT, Kahn ML, Yonas H, Lawton MT, Kim H, Morrison L (2019) Familial cerebral cavernous malformations. Stroke 50(5):1294–1301. https://doi.org/10.1161/STROKEAHA.118.022314

Article  PubMed  PubMed Central  Google Scholar 

Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207(4):881–896. https://doi.org/10.1084/jem.20091258

CAS  Article  PubMed  PubMed Central  Google Scholar 

Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285(16):11760–11764. https://doi.org/10.1074/jbc.C109.097220

CAS  Article  PubMed  PubMed Central  Google Scholar 

Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184. https://doi.org/10.1038/nm.1911

CAS  Article  PubMed  PubMed Central  Google Scholar 

McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH, Marchuk DA, Awad IA (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43(2):571–574. https://doi.org/10.1161/STROKEAHA.111.625467

CAS  Article  PubMed  Google Scholar 

Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y, Zhang L, Wu M, Zeineddine HA, Girard R, McDonald DA, Rorrer A, Gallione C, Pytel P, Liao JK, Marchuk DA, Awad IA (2017) RhoA kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48(1):187–194. https://doi.org/10.1161/STROKEAHA.116.015013

CAS  Article  PubMed  Google Scholar 

Shenkar R, Peiper A, Pardo H, Moore T, Lightle R, Girard R, Hobson N, Polster SP, Koskimaki J, Zhang D, Lyne SB, Cao Y, Chaudagar K, Saadat L, Gallione C, Pytel P, Liao JK, Marchuk D, Awad IA (2019) Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive Pdcd10/Ccm3 disease. Stroke 50(3):738–744. https://doi.org/10.1161/STROKEAHA.118.024058

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mikelis CM, Simaan M, Ando K, Fukuhara S, Sakurai A, Amornphimoltham P, Masedunskas A, Weigert R, Chavakis T, Adams RH, Offermanns S, Mochizuki N, Zheng Y, Gutkind JS (2015) RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun 6:6725. https://doi.org/10.1038/ncomms7725

CAS  Article  PubMed  Google Scholar 

Hoang MV, Whelan MC, Senger DR (2004) Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc Natl Acad Sci U S A 101(7):1874–1879. https://doi.org/10.1073/pnas.0308525100

CAS  Article  PubMed  PubMed Central  Google Scholar 

Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Cir

留言 (0)

沒有登入
gif