Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1+/− mouse model of autism spectrum disorders

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed: Washington, DC; 2013.

Frazier TW, Youngstrom EA, Speer L, Embacher R, Law P, Constantino J, et al. Validation of proposed DSM-5 criteria for autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2012;51(1):28-40.e3.

PubMed  Google Scholar 

Schaefer GB. Clinical genetic aspects of autism spectrum disorders. Int J Mol Sci. 2016;17(2):180.

PubMed Central  Google Scholar 

de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345–61.

PubMed  PubMed Central  Google Scholar 

Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18(6):362–76.

CAS  PubMed  Google Scholar 

Huang T-N, Hsueh Y-P. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders. Front Neurosci. 2015;9:406.

PubMed  PubMed Central  Google Scholar 

De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.

PubMed  PubMed Central  Google Scholar 

McDermott JH, Study DDD, Clayton-Smith J, Briggs TA. The TBR1-related autistic-spectrum-disorder phenotype and its clinical spectrum. Eur J Med Genet. 2018;61(5):253–6.

PubMed  Google Scholar 

O’Roak BJ, Vives L, Fu W, Egertson Jarrett D, Stanaway Ian B, Phelps Ian G, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.

PubMed  PubMed Central  Google Scholar 

O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.

PubMed  PubMed Central  Google Scholar 

Sapey-Triomphe L-A, Reversat J, Lesca G, Chatron N, Bussa M, Mazoyer S, et al. A de novo frameshift pathogenic variant in TBR1 identified in autism without intellectual disability. Hum Genomics. 2020;14(1):32.

CAS  PubMed  PubMed Central  Google Scholar 

Traylor RN, Dobyns WB, Rosenfeld JA, Wheeler P, Spence JE, Bandholz AM, et al. Investigation of TBR1 Hemizygosity: four Individuals with 2q24 Microdeletions. Mol Syndromol. 2012;3(3):102–12.

CAS  PubMed  PubMed Central  Google Scholar 

Vegas N, Cavallin M, Kleefstra T, de Boer L, Philbert M, Maillard C, et al. Mutations in TBR1 gene leads to cortical malformations and intellectual disability. Eur J Med Genet. 2018;61(12):759–64.

PubMed  Google Scholar 

Huang T-N, Chuang H-C, Chou W-H, Chen C-Y, Wang H-F, Chou S-J, et al. Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality. Nat Neurosci. 2014;17(2):240–7.

CAS  PubMed  Google Scholar 

Huang T-N, Yen T-L, Qiu LR, Chuang H-C, Lerch JP, Hsueh Y-P. Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Molecular Autism. 2019;10(1):5.

PubMed  PubMed Central  Google Scholar 

Yook C, Kim K, Kim D, Kang H, Kim S-G, Kim E, et al. A TBR1-K228E mutation induces Tbr1 upregulation, altered cortical distribution of interneurons, increased inhibitory synaptic transmission, and autistic-like behavioral deficits in mice. Front Mol Neurosci. 2019;12:241.

CAS  PubMed  PubMed Central  Google Scholar 

Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JLR. T-Brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron. 1995;15(1):63–78.

CAS  PubMed  Google Scholar 

Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S, et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron. 1998;21(6):1273–82.

CAS  PubMed  Google Scholar 

Kolk SM, Whitman MC, Yun ME, Shete P, Donoghue MJ. A unique subpopulation of Tbr1-expressing deep layer neurons in the developing cerebral cortex. Mol Cell Neurosci. 2005;30(4):538–51.

CAS  PubMed  Google Scholar 

Hevner RF, Shi L, Justice N, Hsueh Y-P, Sheng M, Smiga S, et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron. 2001;29(2):353–66.

CAS  PubMed  Google Scholar 

McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JLR, et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci. 2011;31(2):549–64.

CAS  PubMed  PubMed Central  Google Scholar 

Han W, Kwan KY, Shim S, Lam MMS, Shin Y, Xu X, et al. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc Natl Acad Sci. 2011;108(7):3041.

CAS  PubMed  PubMed Central  Google Scholar 

Remedios R, Huilgol D, Saha B, Hari P, Bhatnagar L, Kowalczyk T, et al. A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci. 2007;10(9):1141–50.

CAS  PubMed  Google Scholar 

Bedogni F, Hodge RD, Elsen GE, Nelson BR, Daza RAM, Beyer RP, et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci. 2010;107(29):13129–34.

CAS  PubMed  PubMed Central  Google Scholar 

Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, et al. The epigenetic factor landscape of developing neocortex is regulated by transcription factors Pax6→ Tbr2→ Tbr1. Front Neurosci. 2018;12:571.

PubMed  PubMed Central  Google Scholar 

Englund C, Fink A, Lau C, Pham D, Daza RAM, Bulfone A, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25(1):247.

CAS  PubMed  PubMed Central  Google Scholar 

Marinaro F, Marzi MJ, Hoffmann N, Amin H, Pelizzoli R, Niola F, et al. MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Rep. 2017;18(4):603–18.

CAS  PubMed  PubMed Central  Google Scholar 

Nambot S, Faivre L, Mirzaa G, Thevenon J, Bruel A-L, Mosca-Boidron A-L, et al. De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature. Eur J Hum Genet. 2020;28(6):770–82.

CAS  PubMed  PubMed Central  Google Scholar 

Chuang H-C, Huang T-N, Hsueh Y-P. Neuronal excitation upregulates Tbr1, a high-confidence risk gene of autism, mediating Grin2b expression in the adult brain. Front Cellular Neurosci. 2014;8:280.

Google Scholar 

Hsueh Y-P. The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem. 2006;13(16):1915–27.

CAS  PubMed  Google Scholar 

Hsueh Y-P. Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol. 2009;66(4):438–43.

CAS  PubMed  Google Scholar 

Hsueh Y-P, Wang T-F, Yang F-C, Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404(6775):298–302.

CAS  PubMed  Google Scholar 

Huang T-N, Hsueh Y-P. Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice. J Psychiatry Neurosci. 2017;42(1):37–47.

PubMed  Google Scholar 

Wang G-S, Hong C-J, Yen T-Y, Huang H-Y, Ou Y, Huang T-N, et al. Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron. 2004;42(1):113–28.

CAS  PubMed  Google Scholar 

Wang T-F, Ding C-N, Wang G-S, Luo S-C, Lin Y-L, Ruan Y, et al. Identification of Tbr-1/CASK complex target genes in neurons. J Neurochem. 2004;91(6):1483–92.

CAS  PubMed  Google Scholar 

Chuang H-C, Huang T-N, Hsueh Y-P. T-Brain-1 – A potential master regulator in autism spectrum disorders. Autism Res. 2015;8(4):412–26.

PubMed  Google Scholar 

Lee E-J, Lee H, Huang T-N, Chung C, Shin W, Kim K, et al. Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nat Commun. 2015;6(1):7168.

CAS  PubMed  Google Scholar 

Hsu T-T, Huang T-N, Hsueh Y-P. Anterior commissure regulates neuronal activity of amygdalae and influences locomotor activity, social interaction and fear memory in mice. Front Mol Neurosci. 2020;13:47.

CAS  PubMed  PubMed Central  Google Scholar 

Huang T-N, Hsu T-T, Lin M-H, Chuang H-C, Hu H-T, Sun C-P, et al. Interhemispheric connectivity potentiates the basolateral amygdalae and regulates social interaction and memory. Cell Rep. 2019;29(1):34-48.e4.

CAS  PubMed  Google Scholar 

Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10(11):780–91.

CAS  PubMed  Google Scholar 

Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, et al. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J. 2011;30(3):569–81.

CAS  PubMed  PubMed Central  Google Scholar 

Tao-Cheng J-H, Toy D, Winters CA, Reese TS, Dosemeci A. Zinc Stabilizes Shank3 at the postsynaptic density of hippocampal synapses. PLoS ONE. 2016;11(5):e0153979.

PubMed  PubMed Central  Google Scholar 

Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci. 2006;31(7):366–73.

CAS  PubMed  Google Scholar 

Arons MH, Lee K, Thynne CJ, Kim SA, Schob C, Kindler S, et al. Shank3 is part of a zinc-sensitive signaling system that regulates excitatory synaptic strength. J Neurosci. 2016;36(35):9124.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif