Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance

Joslin EP (2021) The prevention of diabetes mellitus. JAMA 325(2):190. https://doi.org/10.1001/jama.2020.17738

Article  Google Scholar 

American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62–S67. https://doi.org/10.2337/dc09-S062

Article  Google Scholar 

Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188. doi:https://doi.org/10.1152/physrev.00045.2011

CAS  Article  PubMed  Google Scholar 

Escaned J, Lerman LO (2020) Coronary microcirculation and hypertensive heart failure. Eur Heart J 41(25):2376–2378. doi:https://doi.org/10.1093/eurheartj/ehaa437

Article  PubMed  Google Scholar 

Lüscher TF (2018) Assessing myocardial ischaemia in epicardial coronaries and the microcirculation. Eur Heart J 39(46):4047–4050. doi:https://doi.org/10.1093/eurheartj/ehy816

Article  PubMed  Google Scholar 

Taqueti VR, Di Carli MF (2018) Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol 72(21):2625–2641. https://doi.org/10.1016/j.jacc.2018.09.042

Article  PubMed  Google Scholar 

Vancheri F, Longo G, Vancheri S, Henein M (2020) Coronary microvascular dysfunction. J Clin Med. https://doi.org/10.3390/jcm9092880

Article  PubMed  Google Scholar 

Cuijpers I, Simmonds SJ, van Bilsen M, Czarnowska E, González Miqueo A, Heymans S, Kuhn AR, Mulder P, Ratajska A, Jones EAV, Brakenhielm E (2020) Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Res Cardiol 115(4):39. doi:https://doi.org/10.1007/s00395-020-0798-y

Article  PubMed  Google Scholar 

Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. doi:https://doi.org/10.1016/j.jacc.2013.02.092

Article  PubMed  Google Scholar 

Jia G, Hill MA, Sowers JR (2018) Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circul Res 122(4):624–638. doi:https://doi.org/10.1161/circresaha.117.311586

CAS  Article  Google Scholar 

Shivu GN, Phan TT, Abozguia K, Ahmed I, Wagenmakers A, Henning A, Narendran P, Stevens M, Frenneaux M (2010) Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation 121(10):1209–1215. doi:https://doi.org/10.1161/circulationaha.109.873273

Article  PubMed  Google Scholar 

Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D, Gros M (2017) Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res 45(6):1901–1929. doi:https://doi.org/10.1177/0300060516675504

Article  PubMed  Google Scholar 

Akbari M, Kirkwood TBL, Bohr VA (2019) Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev 54:100940. doi:https://doi.org/10.1016/j.arr.2019.100940

CAS  Article  PubMed  Google Scholar 

Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, Zielonka J, Dwinell MB (2018) A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol 14:316–327. doi:https://doi.org/10.1016/j.redox.2017.09.020

CAS  Article  PubMed  Google Scholar 

Wang J, Toan S, Zhou H (2020) New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 23(3):299–314. doi:https://doi.org/10.1007/s10456-020-09720-2

CAS  Article  PubMed  Google Scholar 

Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM (2020) Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 34:101517. doi:https://doi.org/10.1016/j.redox.2020.101517

CAS  Article  PubMed  Google Scholar 

Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, Avadhani NG (2020) Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: a dose-dependent phenomenon. Redox Biol 36:101606. https://doi.org/10.1016/j.redox.2020.101606

CAS  Article  PubMed  Google Scholar 

Zhu H, Toan S, Mui D, Zhou H (2021) Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol 231(3):e13590. https://doi.org/10.1111/apha.13590

CAS  Article  Google Scholar 

Zhou H, Ren J, Toan S, Mui D (2021) Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev 66:101250. doi:https://doi.org/10.1016/j.arr.2020.101250

CAS  Article  PubMed  Google Scholar 

Cho HM, Ryu JR, Jo Y, Seo TW, Choi YN, Kim JH, Chung JM, Cho B, Kang HC, Yu SW, Yoo SJ, Kim H, Sun W (2019) Drp1-Zip1 Interaction Regulates Mitochondrial Quality Surveillance System. Mol Cell 73(2):364–376e368. doi:https://doi.org/10.1016/j.molcel.2018.11.009

CAS  Article  PubMed  Google Scholar 

Guarini G, Huqi A, Morrone D, Capozza P, Todiere G, Marzilli M (2014) Pharmacological approaches to coronary microvascular dysfunction. Pharmacol Ther 144(3):283–302. doi:https://doi.org/10.1016/j.pharmthera.2014.06.008

CAS  Article  PubMed  Google Scholar 

Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11(1):61–74. doi:https://doi.org/10.1007/s11154-010-9134-4

CAS  Article  PubMed  Google Scholar 

Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J, Zhou H (2021) Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics 11(14):6766–6785. doi:https://doi.org/10.7150/thno.60143

CAS  Article  PubMed  Google Scholar 

Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM (2016) Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 166(5):1324–1337e1311. doi:https://doi.org/10.1016/j.cell.2016.07.040

CAS  Article  PubMed  Google Scholar 

Qiao K, Liu Y, Xu Z, Zhang H, Zhang H, Zhang C, Chang Z, Lu X, Li Z, Luo C, Liu Y, Yang C, Sun T (2020) RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis. doi:https://doi.org/10.1007/s10456-020-09744-8

Article  PubMed  Google Scholar 

Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M (2020) Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 23(2):231–247. doi:https://doi.org/10.1007/s10456-019-09703-y

CAS  Article  PubMed  Google Scholar 

Nguyen QL, Okuno N, Hamashima T, Dang ST, Fujikawa M, Ishii Y, Enomoto A, Maki T, Nguyen HN, Nguyen VT, Fujimori T, Mori H, Andrae J, Betsholtz C, Takao K, Yamamoto S, Sasahara M (2020) Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis. doi:https://doi.org/10.1007/s10456-020-09742-w

Article  PubMed  Google Scholar 

Nawaz MI, Rezzola S, Tobia C, Coltrini D, Belleri M, Mitola S, Corsini M, Sandomenico A, Caporale A, Ruvo M, Presta M (2020) D-Peptide analogues of Boc-Phe-Leu-Phe-Leu-Phe-COOH induce neovascularization via endothelial N-formyl peptide receptor 3. Angiogenesis 23(3):357–369. doi:https://doi.org/10.1007/s10456-020-09714-0

Article  PubMed  Google Scholar 

Nakamoto S, Ito Y, Nishizawa N, Goto T, Kojo K, Kumamoto Y, Watanabe M, Majima M (2020) Lymphangiogenesis and accumulation of reparative macrophages contribute to liver repair after hepatic ischemia-reperfusion injury. Angiogenesis 23(3):395–410. doi:https://doi.org/10.1007/s10456-020-09718-w

CAS  Article  PubMed  Google Scholar 

Moon EH, Kim YH, Vu PN, Yoo H, Hong K, Lee YJ, Oh SP (2020) TMEM100 is a key factor for specification of lymphatic endothelial progenitors. Angiogenesis 23(3):339–355. doi:https://doi.org/10.1007/s10456-020-09713-1

Article  PubMed  Google Scholar 

Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7(4):257–264. doi:https://doi.org/10.1007/s11892-007-0041-3

CAS  Article  PubMed  Google Scholar 

De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663. doi:https://doi.org/10.1016/j.cell.2013.06.037

CAS  Article  PubMed  Google Scholar 

Margadant C (2020) Positive and negative feedback mechanisms controlling tip/stalk cell identity during sprouting angiogenesis. Angiogenesis 23(2):75–77. doi:https://doi.org/10.1007/s10456-020-09706-0

CAS  Article  PubMed  Google Scholar 

Ma Q, Reiter RJ, Chen Y (2020) Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis 23(2):91–104. doi:https://doi.org/10.1007/s10456-019-09689-7

Article  PubMed  Google Scholar 

Lustgarten Guahmich N, Farber G, Shafiei S, McNally D, Redmond D, Kallinos E, Stuhlmann H, Dufort D, James D, Blobel CP (2020) Endothelial deletion of ADAM10, a key regulator of Notch signaling, causes impaired decidualization and reduced fertility in female mice. Angiogenesis 23(3):443–458. doi:https://doi.org/10.1007/s10456-020-09723-z

CAS  Article  PubMed  Google Scholar 

Hwang MH, Kim S (2014) Type 2 diabetes: endothelial dysfunction and exercise. J Exerc Nutr Biochem 18(3):239–247. https://doi.org/10.5717/jenb.2014.18.3.239

Article  Google Scholar 

Latacz E, Caspani E, Barnhill R, Lugassy C, Verhoef C, Grünhagen D, Van Laere S, Fernández Moro C, Gerling M, Dirix M, Dirix LY, Vermeulen PB (2020) Pathological features of vessel co-option versus sprouting angiogenesis. Angiogenesis 23(1):43–54. doi:https://doi.org/10.1007/s10456-019-09690-0

CAS  Article  PubMed  Google Scholar 

Sabbatinelli J, Prattichizzo F, Olivieri F, Procopio AD, Rippo MR, Giuliani A (2019) Where metabolism meets senescence: focus on endothelial cells. Front Physiol 10:1523. https://doi.org/10.3389/fphys.2019.01523

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif