Variable penetrance of Nab3 granule accumulation quantified by a new tool for high-throughput single-cell granule analysis

Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158. https://doi.org/10.1016/j.cell.2009.02.044

CAS  Article  PubMed  PubMed Central  Google Scholar 

Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–434. https://doi.org/10.1016/j.cell.2018.12.035

CAS  Article  PubMed  PubMed Central  Google Scholar 

Arndt KM, Reines D (2015) Termination of transcription of short noncoding RNAs by RNA polymerase II. Annu Rev Biochem 84:381–404. https://doi.org/10.1146/annurev-biochem-060614-034457

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115::AID-YEA204%3e3.0.CO;2-2

CAS  Article  PubMed  Google Scholar 

Carcamo WC, Calise SJ, von Muhlen CA, Satoh M, Chan EK (2014) Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol 308:35–74. https://doi.org/10.1016/B978-0-12-800097-7.00002-6

CAS  Article  PubMed  Google Scholar 

Corden JL (2008) Yeast Pol II start-site selection: the long and the short of it. EMBO Rep 9:1084–1086. https://doi.org/10.1038/Embor.2008.192

CAS  Article  PubMed  PubMed Central  Google Scholar 

Creamer TJ, Darby MM, Jamonnak N, Schaughency P, Hao H, Wheelan SJ, Corden JL (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7:e1002329. https://doi.org/10.1371/journal.pgen.1002329

CAS  Article  PubMed  PubMed Central  Google Scholar 

Darby MM, Serebreni L, Pan X, Boeke JD, Corden JL (2012) The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion. Mol Cell Biol 32:1762–1775. https://doi.org/10.1128/MCB.00050-12

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dichtl B (2008) Transcriptional ShortCUTs. Mol Cell 31:617–618. https://doi.org/10.1016/J.Molcel.2008.08.014

CAS  Article  PubMed  Google Scholar 

Dirick L, Bendris W, Loubiere V, Gostan T, Gueydon E, Schwob E (2014) Metabolic and environmental conditions determine nuclear genomic instability in budding yeast lacking mitochondrial DNA. G3 (bethesda) 4:411–423. https://doi.org/10.1534/g3.113.010108

CAS  Article  Google Scholar 

Ephrussi B, Jakob H, Grandchamp S (1966) Etudes Sur La SuppressivitE Des Mutants a Deficience Respiratoire De La Levure. II. Etapes De La Mutation Grande En Petite Provoquee Par Le Facteur Suppressif. Genetics 54:1–29. https://doi.org/10.1093/genetics/54.1.1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ferguson LR, von Borstel RC (1992) Induction of the cytoplasmic ‘petite’ mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat Res 265:103–148. https://doi.org/10.1016/0027-5107(92)90042-z

CAS  Article  PubMed  Google Scholar 

Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC (1991) Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 194:149–165. https://doi.org/10.1016/0076-6879(91)94013-3

CAS  Article  PubMed  Google Scholar 

Gaisne M, Becam AM, Verdiere J, Herbert CJ (1999) A ‘natural’ mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). Curr Genet 36:195–200. https://doi.org/10.1007/s002940050490

CAS  Article  PubMed  Google Scholar 

Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

CAS  Article  Google Scholar 

Harrison AF, Shorter J (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem J 474:1417–1438. https://doi.org/10.1042/BCJ20160499

CAS  Article  PubMed  Google Scholar 

Hedstrom L (2009) IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109:2903–2928. https://doi.org/10.1021/cr900021w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ilik IA, Aktas T (2021) Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J. https://doi.org/10.1111/febs.16117

Article  PubMed  Google Scholar 

Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL (2011) Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA 17:2011–2025. https://doi.org/10.1261/rna.2840711

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jenks MH, O’Rourke TW, Reines D (2008) Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol Cell Biol 28:3883–3893. https://doi.org/10.1128/MCB.00380-08

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kopcewicz KA, O’Rourke TW, Reines D (2007) Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol Cell Biol 27:2821–2829. https://doi.org/10.1128/MCB.02159-06

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuehner JN, Brow DA (2008) Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 31:201–211. https://doi.org/10.1016/j.molcel.2008.05.018

CAS  Article  PubMed  Google Scholar 

Lee S, Lim WA, Thorn KS (2013) Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. PLoS One 8:e67902. https://doi.org/10.1371/journal.pone.0067902

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219. https://doi.org/10.1016/j.molcel.2015.08.018

CAS  Article  PubMed  PubMed Central  Google Scholar 

Loya TJ, O’Rourke TW, Reines D (2012) A genetic screen for terminator function in yeast identifies a role for a new functional domain in termination factor Nab3. Nucleic Acids Res 40:7476–7491. https://doi.org/10.1093/nar/gks377

CAS  Article  PubMed  PubMed Central  Google Scholar 

Loya TJ, O’Rourke TW, Degtyareva N, Reines D (2013a) A network of interdependent molecular interactions describes a higher order Nrd1–Nab3 complex involved in yeast transcription termination. J Biol Chem 288:34158–34167. https://doi.org/10.1074/jbc.M113.516765

CAS  Article  PubMed  PubMed Central  Google Scholar 

Loya TJ, O’Rourke TW, Reines D (2013b) Yeast Nab3 protein contains a self-assembly domain found in human heterogeneous nuclear ribonucleoprotein-C (hnRNP-C) that is necessary for transcription termination. J Biol Chem 288:2111–2117. https://doi.org/10.1074/jbc.M112.430678

CAS  Article  PubMed  Google Scholar 

Loya TJ, O’Rourke TW, Reines D (2017) The hnRNP-like Nab3 termination factor can employ heterologous prion-like domains in place of its own essential low complexity domain. PLoS One 12:e0186187. https://doi.org/10.1371/journal.pone.0186187

CAS  Article  PubMed  PubMed Central  Google Scholar 

Loya TJ, O’Rourke TW, Simke WC, Kelley JB, Reines D (2018) Nab3’s localization to a nuclear granule in response to nutrient deprivation is determined by its essential prion-like domain. PLoS One 13:e0209195. https://doi.org/10.1371/journal.pone.0209195

CAS  Article  PubMed  PubMed Central  Google Scholar 

MATLAB (R2021a) (2020) The MathWorks, Inc., Natick

O’Rourke TW, Loya TJ, Head PE, Horton JR, Reines D (2015) Amyloid-like assembly of the low complexity domain of yeast Nab3. Prion 9:34–47. https://doi.org/10.1080/19336896.2014.997618

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

CAS  Article  Google Scholar 

Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JH (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife. https://doi.org/10.7554/eLife.03703

Article  PubMed  PubMed Central  Google Scholar 

Sathyanarayanan U, Musa M, Bou Dib P, Raimundo N, Milosevic I, Krisko A (2020) ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo. Nat Commun 11:5226. https://doi.org/10.1038/s41467-020-19104-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schiavon CR, Griffin ME, Pirozzi M, Parashuraman R, Zhou W, Jinnah HA, Reines D, Kahn RA (2018) Compositional complexity of rods and rings. Mol Biol Cell 29:2303–2316. https://doi.org/10.1091/mbc.E18-05-0274

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

CAS  Article  PubMed  PubMed Central  Google Scholar 

Steinmetz EJ, Brow DA (1996) Repression of gene expression by an exogenous sequence element acting in concert

留言 (0)

沒有登入
gif