Application of recyclable CRISPR/Cas9 tools for targeted genome editing in the postharvest pathogenic fungi Penicillium digitatum and Penicillium expansum

Al Abdallah Q, Ge W, Fortwendel-Jarrod R, Mitchell-Aaron P (2017) A simple and universal system for gene manipulation in Aspergillus fumigatus: in vitro-assembled Cas9-guide RNA ribonucleoproteins coupled with microhomology repair templates. mSphere 2:e00446-00417. https://doi.org/10.1128/mSphere.00446-17

Article  Google Scholar 

Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M, Bassett AR, Harding H, Galanty Y, Muñoz-Martínez F, Metzakopian E, Jackson SP, Parts L (2019) Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol 37:64–72. https://doi.org/10.1038/nbt.4317

CAS  Article  Google Scholar 

Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549. https://doi.org/10.1002/bit.25662

CAS  Article  PubMed  Google Scholar 

Ballester A-R, Marcet-Houben M, Levin E, Sela N, Selma-Lázaro C, Carmona L, Wisniewski M, Droby S, González-Candelas L, Gabaldón T (2014) Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity. Mol Plant-Microbe Interact 28:232–248. https://doi.org/10.1094/mpmi-09-14-0261-fi

Article  Google Scholar 

Ballester A-R, López-Pérez M, de la Fuente B, González-Candelas L (2019) Functional and pharmacological analyses of the role of Penicillium digitatum proteases on virulence. Microorganisms 7:7. https://doi.org/10.3390/microorganisms7070198

CAS  Article  Google Scholar 

Bugeda A, Garrigues S, Gandía M, Manzanares P, Marcos JF, Coca M (2020) The antifungal protein AfpB induces regulated cell death in its parental fungus Penicillium digitatum. mSphere 5:e00595-00520. https://doi.org/10.1128/mSphere.00595-20

Article  Google Scholar 

Buron-Moles G, López-Pérez M, González-Candelas L, Viñas I, Teixidó N, Usall J, Torres R (2012) Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples. Int J Food Microbiol 160:162–170. https://doi.org/10.1016/j.ijfoodmicro.2012.10.005

CAS  Article  PubMed  Google Scholar 

Chen Y, Li B, Xu X, Zhang Z, Tian S (2018) The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol 20:4063–4078. https://doi.org/10.1111/1462-2920.14453

CAS  Article  PubMed  Google Scholar 

Costa JH, Bazioli JM, de Moraes Pontes JG, Fill TP (2019) Penicillium digitatum infection mechanisms in citrus: what do we know so far? Fungal Biol 123:584–593. https://doi.org/10.1016/j.funbio.2019.05.004

CAS  Article  PubMed  Google Scholar 

Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2:3. https://doi.org/10.3978/j.issn.2218-676X.2013.04.02

CAS  Article  Google Scholar 

de Ramón-Carbonell M, Sánchez-Torres P (2017) The transcription factor PdSte12 contributes to Penicillium digitatum virulence during citrus fruit infection. Postharvest Biol Technol 125:129–139. https://doi.org/10.1016/j.postharvbio.2016.11.012

CAS  Article  Google Scholar 

Delgado J, Owens RA, Doyle S, Asensio MA, Núñez F (2016) Antifungal proteins from moulds: analytical tools and potential application to dry-ripened foods. Appl Microbiol Biotechnol 100:6991–7000. https://doi.org/10.1007/s00253-016-7706-2

CAS  Article  PubMed  Google Scholar 

Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267. https://doi.org/10.1038/nbt.3026

CAS  Article  PubMed  PubMed Central  Google Scholar 

Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4:e5553. https://doi.org/10.1371/journal.pone.0005553

CAS  Article  PubMed  PubMed Central  Google Scholar 

Foster AJ, Martin-Urdiroz M, Yan X, Wright HS, Soanes DM, Talbot NJ (2018) CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus. Sci Rep 8:14355. https://doi.org/10.1038/s41598-018-32702-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fuchs B, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625. https://doi.org/10.1128/ec.00193-09

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gandía M, Harries E, Marcos JF (2014) The myosin motor domain-containing chitin synthase PdChsVII is required for development, cell wall integrity and virulence in the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 67:58–70. https://doi.org/10.1016/j.fgb.2014.04.002

CAS  Article  PubMed  Google Scholar 

Gandía M, Garrigues S, Bolós B, Manzanares P, Marcos JF (2019a) The Myosin motor domain-containing chitin synthases are involved in cell wall integrity and sensitivity to antifungal proteins in Penicillium digitatum. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02400

Article  PubMed  PubMed Central  Google Scholar 

Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF (2019b) Differential roles, crosstalk and response to the antifungal protein AfpB in the three mitogen-activated protein kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 124:17–28. https://doi.org/10.1016/j.fgb.2018.12.006

CAS  Article  PubMed  Google Scholar 

Gandía M, Monge A, Garrigues S, Orozco H, Giner-Llorca M, Marcos JF, Manzanares P (2020) Novel insights in the production, activity and protective effect of Penicillium expansum antifungal proteins. Int J Biol Macromol 164:3922–3931. https://doi.org/10.1016/j.ijbiomac.2020.08.208

CAS  Article  PubMed  Google Scholar 

Gardiner DM, Kazan K (2018) Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum. Fungal Biol 122:131–137. https://doi.org/10.1016/j.funbio.2017.11.006

CAS  Article  PubMed  Google Scholar 

Garrigues S, Gandía M, Popa C, Borics A, Marx F, Coca M, Marcos JF, Manzanares P (2017) Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum. Sci Rep 7:14663. https://doi.org/10.1038/s41598-017-15277-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Garrigues S, Gandía M, Castillo L, Coca M, Marx F, Marcos JF, Manzanares P (2018) Three antifungal proteins from Penicillium expansum: different patterns of production and antifungal activity. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02370

Article  PubMed  PubMed Central  Google Scholar 

Garrigues S, Marcos JF, Manzanares P, Gandía M (2020) A novel secreted cysteine-rich anionic (Sca) protein from the citrus postharvest pathogen Penicillium digitatum enhances virulence and modulates the activity of the Antifungal Protein B (AfpB). J Fungi 6:203. https://doi.org/10.3390/jof6040203

CAS  Article  Google Scholar 

González-Candelas L, Alamar S, Sánchez-Torres P, Zacarías L, Marcos JF (2010) A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biol 10:194. https://doi.org/10.1186/1471-2229-10-194

CAS  Article  PubMed  PubMed Central  Google Scholar 

Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45:35–44. https://doi.org/10.1016/j.fgb.2007.04.008

CAS  Article  PubMed  Google Scholar 

Harries E, Gandía M, Carmona L, Marcos JF (2015) The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26. Mol Plant Pathol 16:748–761. https://doi.org/10.1111/mpp.12232

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hegedüs N, Marx F (2013) Antifungal proteins: more than antimicrobials? Fungal Biol Rev 26:132–145. https://doi.org/10.1016/j.fbr.2012.07.002

Article  PubMed  PubMed Central  Google Scholar 

Jan-Vonk P, Escobar N, Wösten HAB, Lugones LG, Ohm RA (2019) High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins. Sci Rep 9:7632. https://doi.org/10.1038/s41598-019-44133-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

CAS  Article  PubMed  PubMed Central  Google Scholar 

Julca I, Droby S, Sela N, Marcet-Houben M, Gabaldón T (2016) Contrasting genomic diversity in two closely related postharvest pathogens: Penicillium digitatum and Penicillium expansum. Genome Biol Evol 8:218–227. https://doi.org/10.1093/gbe/evv252

CAS  Article  Google Scholar 

Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J-I (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642. https://doi.org/10.1007/s10529-015-2015-x

CAS  Article  PubMed  Google Scholar 

Kowalczyk JE, Lubbers RJM, Peng M, Battaglia E, Visser J, de Vries RP (2017) Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin. Sci Rep 7:12356. https://doi.org/10.1038/s41598-017-12362-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Králová M, Bergougnoux V, Frébort I (2021) CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. J Biotechnol 325:341–354. https://doi.org/10.1016/j.jbiotec.2020.09.028

CAS  Article  PubMed  Google Scholar 

Kun RS, Gomes ACS, Hildén KS, Salazar Cerezo S, Mäkelä MR, de Vries RP (2019) Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv 37:107361. https://doi.org/10.1016/j.biotechadv.2019.02.017

CAS  Article  PubMed  Google Scholar 

Leisen T, Bietz F, Werner J, Wegner A, Schaffrath U, Scheuring D, Willmund F, Mosbach A, Scalliet G, Hahn M (2020) CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. PLOS Pathog 16:e1008326. https://doi.org/10.1371/journal.ppat.1008326

CAS  Article  PubMed 

留言 (0)

沒有登入
gif