Prophylactic or therapeutic administration of Holarrhena floribunda hydro ethanol extract suppresses complete Freund’s adjuvant-induced arthritis in Sprague-Dawley rats

Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. https://doi.org/10.1016/j.jaci.2016.05.011.

CAS  Article  PubMed  Google Scholar 

Zhong J, Shi G. Editorial: Regulation of Inflammation in Chronic Disease, Frontiers in Immunology. 2019;10:737.

Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.

CAS  Article  PubMed  Google Scholar 

Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol. 2009;9(4):351–69. https://doi.org/10.1016/j.coph.2009.06.020.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pahwa R, Jialal I. Chronic inflammation; 2019.

Google Scholar 

Williams JP, Meyers JA. Immune-mediated inflammatory disorders (IMIDs): the economic and clinical costs. Am J Managed Care. 2002, 8(21; SUPP):S664–81.

Straub RH, Schradin C. Chronic inflammatory systemic diseases – an evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health. 2016:37–51. https://doi.org/10.1093/emph/eow001.

Brooks PM. The Heberden oration 1997. Treatment of rheumatoid arthritis: from symptomatic relief to potential cure. Br J Rheumatol. 1998;37(12):1265–71. https://doi.org/10.1093/rheumatology/37.12.1265.

CAS  Article  PubMed  Google Scholar 

Zhang W, Anis AH. The economic burden of rheumatoid arthritis: beyond health care costs. Clin Rheumatol. 2011;30(1):25–32. https://doi.org/10.1007/s10067-010-1637-6.

Article  Google Scholar 

Dhikav V, Singh S, Anand K. Newer non-steroidal anti-inflammatory drugs: a review of their therapeutic potential and adverse drug reactions. J Indian Acad Clin Med. 2002;3:332–8.

Google Scholar 

Hudson N, Hawkey CJ. Non-steroidal anti-inflammatory drug-associated upper gastrointestinal ulceration and complications. Eur J Gastroenterol Hepatol. 1993;5(6):412–9. https://doi.org/10.1097/00042737-199306000-00004.

Article  Google Scholar 

Laine L, Smith R, Min K, Chen C, Dubois RW. Systematic review: the lower gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs. Aliment Pharmacol Ther. 2006;22(5):751–67. https://doi.org/10.1111/j.1365-2036.2006.03043.x.

CAS  Article  Google Scholar 

Xue R, Dong L, Zhang S, Deng C, Liu T, Wang J, et al. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(8):1181–6. https://doi.org/10.1002/rcm.3466.

CAS  Article  PubMed  Google Scholar 

Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297(5):E1105–14. https://doi.org/10.1152/ajpendo.00348.2009.

CAS  Article  PubMed  Google Scholar 

Rein P, Mueller RB. Treatment with biologicals in rheumatoid arthritis: an overview. Rheumatol Therapy. 2017;4(2):247–61. https://doi.org/10.1007/s40744-017-0073-3.

Article  Google Scholar 

N’guessan B, Gnangoran B, Sarkodie J, Dosso K, Kretchy I, Amoateng P, et al. Alternative to conventional diabetic management: the Antihyperglycaemic potential of an ethyl acetate fraction extract of Holarrhena floribunda. Eur J Med Plants. 2015;8(4):175–89. https://doi.org/10.9734/EJMP/2015/17748.

Article  Google Scholar 

Udoh A, Nwafor PA, Udobre AS. Analgesic effect of the methanol root extract of Holarrhena floribunda in albino mice; 2014.

Google Scholar 

Burkill H. The useful plants of west tropical Africa, vol. 1: families AD. 2nd ed: Kew, Royal Botanic Gardens; 1985.

Badmus JA, Ekpo OE, Hussein AA, Meyer M, Hiss DC. Antiproliferative and apoptosis induction potential of the methanolic leaf extract of Holarrhena floribunda (G. Don). Evid Based Complement Alternat Med. 2015;2015:756482.

CAS  Article  Google Scholar 

Ha A. A phyto pharmacological review on a medicinal plant: Holarrhena floribunda. J Med Plants Studies. 2017;5:26–9.

Google Scholar 

Kpegba K, Kondo E, Simalou O, Togbenou K, Boyode P, Toundou O, et al. A significant antihypertensive effect of Holarrhena floribunda supported by an exploratory phytochemical study. J HerbMed Pharmacol. 2018;7(3):160–7. https://doi.org/10.15171/jhp.2018.27.

CAS  Article  Google Scholar 

Antwi S, Oduro-Mensah D, Obiri DD, Osafo N, Antwi AO, Ansah HO, et al. Hydro ethanol extract of Holarrhena floribunda stem bark exhibits anti-anaphylactic and anti-oedematogenic effects in murine models of acute inflammation. Research Square. 2021. https://doi.org/10.21203/rs.3.rs-110342/v1.

De Costa F, ACA Y, Fleck JD, Gosmann G, Fett-Neto AG. Immunoadjuvant and anti-inflammatory plant Saponins: characteristics and biotechnological approaches towards sustainable production. Mini-Rev Med Chem. 2011;11(10):857–80. https://doi.org/10.2174/138955711796575470.

Article  PubMed  Google Scholar 

Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Marine Drugs 2020, Vol 18, Page 147 [Internet]. 2020 [cited 2021 Nov 12];18(3):147. Available from: https://www.mdpi.com/1660-3397/18/3/147/htm

Souto AL, Tavares JF, da Silva MS, de Diniz MFFM, de Athayde-Filho PF, Barbosa Filho JM. Anti-Inflammatory Activity of Alkaloids: An Update from 2000 to 2010. Molecules [Internet]. 2011 [cited 2021 Nov 12];16(10):8515. Available from: /pmc/articles/PMC6264344/.

Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, et al. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020, Vol 25, Page 5932 [Internet]. 2020 15 [cited 2021 Nov 12];25(24):5932. Available from: https://www.mdpi.com/1420-3049/25/24/5932/htm

Stils HF Jr. Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J. 2005;46(3):280–93. https://doi.org/10.1093/ilar.46.3.280.

Article  Google Scholar 

Li J, Ke T, He C, Cao W, Wei M, Zhang L, et al. The anti-arthritic effects of synthetic Melittin on the complete Freund’s adjuvant-induced rheumatoid arthritis model in rats. Am J Chin Med. 2010;38(06):1039–49. https://doi.org/10.1142/S0192415X10008457.

CAS  Article  PubMed  Google Scholar 

Voon V, Napier TC, Frank MJ, Sgambato-Faure V, Grace AA, Rodriguez-Oroz M, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol. 2017;16(3):238–50. https://doi.org/10.1016/S1474-4422(17)30004-2.

Article  PubMed  Google Scholar 

Bevaart L, Vervoordeldonk MJ, Tak PP. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 2010;62(8):2192–205. https://doi.org/10.1002/art.27503.

CAS  Article  PubMed  Google Scholar 

Baddack U, Hartmann S, Bang H, Grobe J, Loddenkemper C, Lipp M, et al. A chronic model of arthritis supported by a strain-specific periarticular lymph node in BALB/c mice. Nat Commun. 2013;4(1):1–10. https://doi.org/10.1038/ncomms2625.

CAS  Article  Google Scholar 

Ramprasath VR, Shanthi P, Sachdanandam P. Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium LINN. Nut milk extract in experimental inflammatory conditions. Biol Pharm Bull. 2006;29(4):693–700. https://doi.org/10.1248/bpb.29.693.

CAS  Article  PubMed  Google Scholar 

Kozin F, McCarty DJ, Sims J, Genant H. The reflex sympathetic dystrophy syndrome: I. clinical and histologic studies: evidence for bilaterality, response to corticosteroids and articular involvement. Am J Med. 1976;60(3):321–31. https://doi.org/10.1016/0002-9343(76)90747-6.

CAS  Article  PubMed  Google Scholar 

Shenker N, Haigh R, Roberts E, Mapp P, Harris N, Blake D. A review of contralateral responses to a unilateral inflammatory lesion. Rheumatology. 2003;42(11):1279–86. https://doi.org/10.1093/rheumatology/keg397.

CAS  Article  PubMed  Google Scholar 

Yu M, Nishiyama A, Trapp BD, Tuohy VK. Interferon-β inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol. 1996;64(1):91–100. https://doi.org/10.1016/0165-5728(95)00160-3.

CAS  Article  PubMed  Google Scholar 

Wilhelm DL. Mechanisms responsible for increased vascular permeability in acute inflammation. Agents Actions. 1973;3(5):297–306. https://doi.org/10.1007/BF01986484.

CAS  Article  PubMed  Google Scholar 

Schaefer U, Schmitz V, Schneider A, Neugebauer E. Histamine induced homologous and heterologous regulation of histamine receptor subtype mRNA expression in cultured endothelial cells. Shock (Augusta, Ga). 1999;12(4):309–15.

CAS  Article  Google Scholar 

Adlesic M, Verdrengh M, Bokarewa M, Dahlberg L, Foster SJ, Tarkowski A. Histamine in rheumatoid arthritis. Scand J Immunol. 2007;65(6):530–7. https://doi.org/10.1111/j.1365-3083.2007.01938.x.

CAS  Article  PubMed  Google Scholar 

Saeki M, Nishimura T, Kaminuma O, Ohtsu H, Mori A, Hiroi T. Crosstalk between histamine and T cells in allergic diseases. Curr Immunol Rev. 2016;12(4):10–3. https://doi.org/10.2174/1573395511666150706180936.

CAS  Article  Google Scholar 

Nasuti C, Fedeli D, Bordoni L, Piangerelli M, Servili M, Selvaggini R, et al. Anti-Inflammatory, Anti-Arthritic and Anti-Nociceptive Activities of Nigella sativa Oil in a Rat Model of Arthritis. Antioxidants (Basel, Switzerland). 2019;8(9):342.

CAS  Google Scholar 

Simons FER. Advances in H1-antihistamines. N Engl J Med. 2004;351(21):2203–17. https://doi.org/10.1056/NEJMra033121.

CAS  Article  PubMed  Google Scholar 

Tamaka K, Seike M, Hagiwara T, Sato A, Ohtsu H. Histamine suppresses regulatory T cells mediated by TGF-β in murine chronic allergic contact dermatitis. Exp Dermatol. 2015;24(4):280–4. https://doi.org/10.1111/exd.12644.

CAS  Article  PubMed  Google Scholar 

Dunford PJ, O’Donnell N, Riley JP, Williams KN, Karlsson L, Thurmond RL. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol. 2006;176(11):7062–70. https://doi.org/10.4049/jimmunol.176.11.7062.

CAS  Article  PubMed  Google Scholar 

Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;9:1873. https://doi.org/10.3389/fimmu.2018.01873.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lippert U, Artuc M, Grützkau A, Babina M, Guhl S, Haase I, et al. Human skin mast cells express H2 and H4, but not H3 receptors. J Investig Dermatol. 2004;123(1):116–23. https://doi.org/10.1111/j.0022-202X.2004.22721.x.

CAS  Article  PubMed  Google Scholar 

Hofstra CL, Desai PJ, Thurmond RL, Fung-Leung W-P. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther. 2003;305(3):1212–21. https://doi.org/10.1124/jpet.102.046581.

CAS  Article  PubMed  Google Scholar 

Mirzahosseini A, Dalmadi B, Csutora P. Histamine receptor H4 regulates mast cell degranulation and IgE induced FcεRI upregulation in murine bone marrow-derived mast cells. Cell Immunol. 2013;283(1–2):38–44. https://doi.org/10.1016/j.cellimm.2013.05.006.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif