Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation

Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8 + T cell differentiation. Nat Rev Immunol. 2018;18:340–56. https://doi.org/10.1038/NRI.2017.146.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mr A, Gk O. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40. https://doi.org/10.1146/ANNUREV-PHYSIOL-012110-142315.

Article  Google Scholar 

Mortada I, Mortada R. Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 2018;61:114–8. https://doi.org/10.1016/J.EJMG.2017.10.015.

Article  PubMed  Google Scholar 

Chandler LA, Jones PA. Hypomethylation of DNA in the regulation of gene expression. Dev Biol. 1988;5:335–49.

CAS  Google Scholar 

Harrison PR. Molecular mechanisms involved in the regulation of gene expression during cell differentiation and development. Immunol Ser. 1990;49:411–64.

CAS  PubMed  Google Scholar 

Roy S, Kundu TK. Gene regulatory networks and epigenetic modifications in cell differentiation. IUBMB Life. 2014;66:100–9. https://doi.org/10.1002/iub.1249.

CAS  Article  PubMed  Google Scholar 

Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetic Chromatin. 2017. https://doi.org/10.1186/S13072-017-0130-8.

Article  Google Scholar 

Pa J. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. https://doi.org/10.1038/NRG3230.

Article  Google Scholar 

Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38. https://doi.org/10.1038/NPP.2012.112.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Th B, Gl V. DNA methyltransferases. Curr Opin Cell Biol. 1994;6:380–9. https://doi.org/10.1016/0955-0674(94)90030-2.

Article  Google Scholar 

Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev. 2017;46:9–14. https://doi.org/10.1016/J.GDE.2017.06.007.

Article  PubMed  Google Scholar 

Pennings S. DNA methylation, nucleosome formation and positioning. Brief Funct Genom Proteom. 2005;3:351–61. https://doi.org/10.1093/BFGP/3.4.351.

CAS  Article  Google Scholar 

Choy JS, Wei S, Lee JY, Chu S, Tan S, Lee T-H. DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc. 2010;132:1782. https://doi.org/10.1021/JA910264Z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y, Bhonker Y, Pelizzola M, Hawkins RD, Avraham KB. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep. 2018. https://doi.org/10.1038/S41598-018-35587-X.

Article  PubMed  PubMed Central  Google Scholar 

Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA. 2006;103:1412–7. https://doi.org/10.1073/PNAS.0510310103.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22. https://doi.org/10.1101/GAD.2037511.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. https://doi.org/10.1101/GAD.947102.

CAS  Article  PubMed  Google Scholar 

No H, Fg W, Ba B-K. Structural insights into methylated DNA recognition by the C-terminal zinc fingers of the DNA reader protein ZBTB38. J Biol Chem. 2018;293:19835–43. https://doi.org/10.1074/JBC.RA118.005147.

Article  Google Scholar 

Alajem A, Roth H, Ratgauzer S, Bavli D, Motzik A, Lahav S, Peled I, Ram O. DNA methylation patterns expose variations in enhancer-chromatin modifications during embryonic stem cell differentiation. PLoS Genet. 2021. https://doi.org/10.1371/JOURNAL.PGEN.1009498.

Article  PubMed  PubMed Central  Google Scholar 

Li Q, Li N, Hu X, Li J, Du Z, Chen L, Yin G, Duan J, Zhang H, Zhao Y, Wang J, Li N. Genome-wide mapping of DNA methylation in chicken. PLoS ONE. 2011;6:19428. https://doi.org/10.1371/JOURNAL.PONE.0019428.

Article  Google Scholar 

Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, Ehrlich M. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin. 2013. https://doi.org/10.1186/1756-8935-6-25.

Article  PubMed  PubMed Central  Google Scholar 

Lim YC, Chia SY, Jin S, Han W, Ding C, Sun L. Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis. Mol Metab. 2016. https://doi.org/10.1016/J.MOLMET.2016.08.006.

Article  PubMed  PubMed Central  Google Scholar 

Gamage TKJB, Schierding W, Hurley D, Tsai P, Ludgate JL, Bhoothpur C, Chamley LW, Weeks RJ, Macaulay EC, James JL. The role of DNA methylation in human trophoblast differentiation. Epigenetics. 2018;13:1154–73. https://doi.org/10.1080/15592294.2018.1549462.

Article  PubMed  PubMed Central  Google Scholar 

Singh P, Lessard SG, Mukherjee P, Rourke B, Otero M. Changes in DNA methylation accompany changes in gene expression during chondrocyte hypertrophic differentiation in vitro. Ann NY Acad Sci. 2021;1490:42–56. https://doi.org/10.1111/NYAS.14494.

CAS  Article  PubMed  Google Scholar 

Menko SA. Lens epithelial cell differentiation. Exp Eye Res. 2002;75:485–90. https://doi.org/10.1006/EXER.2002.2057.

CAS  Article  Google Scholar 

Bassnett S, Shi Y, Vrensen GFJM. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci. 2011;366:1250–64. https://doi.org/10.1098/rstb.2010.0302.

Article  PubMed  PubMed Central  Google Scholar 

Rao PV, Maddala R. The role of the lens actin cytoskeleton in fiber cell elongation and differentiation. Semin Cell Dev Biol. 2006;17:698–711. https://doi.org/10.1016/j.semcdb.2006.10.011.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Robinson ML. An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol. 2006;17:726–40. https://doi.org/10.1016/j.semcdb.2006.10.002.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lovicu FJ, McAvoy JW. Growth factor regulation of lens development. Dev Biol. 2005;280:1–14. https://doi.org/10.1016/J.YDBIO.2005.01.020.

CAS  Article  PubMed  Google Scholar 

Brennan LA, McGreal-Estrada R, Logan CM, Cvekl A, Menko AS, Kantorow M. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation. Exp Eye Res. 2018. https://doi.org/10.1016/j.exer.2018.06.003.

Article  PubMed  PubMed Central  Google Scholar 

Brennan L, Disatham J, Kantorow M. Mechanisms of organelle elimination for lens development and differentiation. Exp Eye Res. 2021. https://doi.org/10.1016/J.EXER.2021.108682.

Article  PubMed  Google Scholar 

Disatham J, Chauss D, Gheyas R, Brennan L, Blanco D, Daley L, Menko AS, Kantorow M. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression. Dev Biol. 2019. https://doi.org/10.1016/j.ydbio.2019.04.020.

Article  PubMed  PubMed Central  Google Scholar 

Piatigorsky J. Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation. 1981;19:134–53. https://doi.org/10.1111/J.1432-0436.1981.TB01141.X.

CAS  Article  PubMed  Google Scholar 

Audette DS, Scheiblin DA, Duncan MK. The molecular mechanisms underlying lens fiber elongation. Exp Eye Res. 2017;156:41–9. https://doi.org/10.1016/j.exer.2016.03.016.

CAS  Article  PubMed  Google Scholar 

Chauss D, Basu S, Rajakaruna S, Ma Z, Gau V, Anastas S, Brennan LA, Hejtmancik JF, Menko AS, Kantorow M. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3. 2014;4:1515–27. https://doi.org/10.1534/g3.114.012120.

Article  PubMed  PubMed Central  Google Scholar 

Cheng C, Nowak RB, Fowler VM. The lens actin filament cytoskeleton: diverse structures for complex functions. Exp Eye Res. 2017;156:58–71. https://doi.org/10.1016/j.exer.2016.03.005.

CAS  Article  PubMed  Google Scholar 

Costello MJ, Brennan LA, Basu S, Chauss D, Mohamed A, Gilliland KO, Johnsen S, Menko AS, Kantorow M. Autophagy and mitophagy participate in ocular lens organelle degradation. Exp Eye Res. 2013;116:141–50. https://doi.org/10.1016/j.exer.2013.08.017.

CAS  Article  PubMed  Google Scholar 

FitzGerald PG. Lens intermediate filaments. Exp Eye Res. 2009;88:165–72. https://doi.org/10.1016/j.exer.2008.11.007.

CAS  Article  PubMed  Google Scholar 

Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev. 2010;90:179–206. https://doi.org/10.1152/physrev.00034.2009.

CAS  Article  PubMed  Google Scholar 

Perng M-D, Zhang Q, Quinlan RA. Insights into the beaded filament of the eye lens. Exp Cell Res. 2007;313:2180–8. https://doi.org/10.1016/j.yexcr.2007.04.005.

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif