Cobalamin cbiP mutant shows decreased tolerance to low temperature and copper stress in Listeria monocytogenes

Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med. 2015;12(12):e1001920.

PubMed  PubMed Central  Google Scholar 

Huang JY, Henao OL, Griffin PM, Vugia DJ, Cronquist AB, Hurd S, et al. Infection with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance–foodborne diseases active surveillance network, 10 U.S. Sites, 2012–2015. MMWR Morb Mortal Wkly Rep. 2016;65(14):368–71.

PubMed  Google Scholar 

Powell MR. Trends in reported foodborne illness in the United States; 1996–2013. Risk Anal. 2016;36(8):1589–98.

PubMed  Google Scholar 

Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot. 2014;77(1):150–70.

CAS  PubMed  Google Scholar 

Buchanan R, Gorris L, Hayman M, Jackson TC, Whiting RC. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017;75:13.

Google Scholar 

Thakur M, Asrani RK, Patial V. Chapter 6 —Listeria monocytogenes: a food-borne pathogen. In: Holban AM, Grumezescu AM, editors. Foodborne Diseases. Cambridge: Academic Press; 2018. p. 157–92.

Google Scholar 

Schlech WF. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol Spectr. 2019;7(3):7.

Google Scholar 

Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology. 2013;159(Pt 12):2437–43.

CAS  PubMed  Google Scholar 

Gandhi M, Chikindas ML. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol. 2007;113(1):1–15.

PubMed  Google Scholar 

Piveteau P, Depret G, Pivato B, Garmyn D, Hartmann A. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment. PLoS ONE. 2011;6(9):e24881.

CAS  PubMed  PubMed Central  Google Scholar 

Whitman KJ, Bono JL, Clawson ML, Loy JD, Bosilevac JM, Arthur TM, et al. Genomic-based identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef heifers. BMC Vet Res. 2020;16(1):70.

CAS  PubMed  PubMed Central  Google Scholar 

Rodas-Suárez OR, Flores-Pedroche JF, Betancourt-Rule JM, Quiñones-Ramírez EI, Vázquez-Salinas C. Occurrence and antibiotic sensitivity of Listeria monocytogenes strains isolated from oysters, fish, and estuarine water. Appl Environ Microbiol. 2006;72(11):7410–2.

PubMed  PubMed Central  Google Scholar 

Weller D, Wiedmann M, Strawn LK. Irrigation is significantly associated with an increased prevalence of Listeria monocytogenes in produce production environments in New York State. J Food Prot. 2015;78(6):1132–41.

PubMed  Google Scholar 

Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front Microbiol. 2018;9:2700.

PubMed  PubMed Central  Google Scholar 

Kallipolitis B, Gahan CGM, Piveteau P. Factors contributing to Listeria monocytogenes transmission and impact on food safety. Curr Opin Food Sci. 2020;36:9–17.

Google Scholar 

Tan X, Chung T, Chen Y, Macarisin D, LaBorde L, Kovac J. The occurrence of Listeria monocytogenes is associated with built environment microbiota in three tree fruit processing facilities. Microbiome. 2019;7(1):115.

PubMed  PubMed Central  Google Scholar 

Fang H, Kang J, Zhang D. Microbial production of vitamin B(12): a review and future perspectives. Microb Cell Fact. 2017;16(1):15.

PubMed  PubMed Central  Google Scholar 

Gruber K, Puffer B, Kräutler B. Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids. Chem Soc Rev. 2011;40(8):4346–63.

CAS  PubMed  Google Scholar 

Kräutler B. Vitamin B12: chemistry and biochemistry. Biochem Soc Trans. 2005;33(Pt 4):806–10.

PubMed  Google Scholar 

Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol. 1996;50:137–81.

CAS  PubMed  Google Scholar 

Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep. 2002;19(4):390–412.

CAS  PubMed  Google Scholar 

Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, et al. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol. 1996;178(3):753–67.

CAS  PubMed  PubMed Central  Google Scholar 

Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem. 2003;278(42):41148–59.

CAS  PubMed  Google Scholar 

Scott AI, Roessner CA. Biosynthesis of cobalamin (vitamin B(12)). Biochem Soc Trans. 2002;30(4):613–20.

CAS  PubMed  Google Scholar 

Ferrer A, Rivera J, Zapata C, Norambuena J, Sandoval Á, Chávez R, et al. Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1. Front Microbiol. 2016;7:748.

PubMed  PubMed Central  Google Scholar 

Anast JM, Bobik TA, Schmitz-Esser S. The cobalamin-dependent gene cluster of Listeria monocytogenes: implications for virulence, stress response, and food safety. Front Microbiol. 2020;11:601816.

PubMed  PubMed Central  Google Scholar 

Anast JM, Schmitz-Esser S. The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS ONE. 2020;15(7):e0233945.

CAS  PubMed  PubMed Central  Google Scholar 

Tang S, Orsi RH, den Bakker HC, Wiedmann M, Boor KJ, Bergholz TM. Transcriptomic analysis of the adaptation of Listeria monocytogenes to growth on vacuum-packed cold smoked salmon. Appl Environ Microbiol. 2015;81(19):6812–24.

CAS  PubMed  PubMed Central  Google Scholar 

Parra A, Toro M, Jacob R, Navarrete P, Troncoso M, Figueroa G, et al. Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. Braz J Microbiol. 2018;49(Suppl 1):113–8.

CAS  PubMed  PubMed Central  Google Scholar 

Wilks SA, Michels HT, Keevil CW. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol. 2006;111(2):93–8.

PubMed  Google Scholar 

Hans M, Mathews S, Mücklich F, Solioz M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases. 2015;11(1):018902.

PubMed  Google Scholar 

Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. Int J Mol Sci. 2019;20(1):175.

PubMed Central  Google Scholar 

Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114(3):377–90.

CAS  PubMed  Google Scholar 

Reyes-Jara A, Latorre M, López G, Bourgogne A, Murray BE, Cambiazo V, et al. Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals. 2010;23(6):1105–12.

CAS  PubMed  Google Scholar 

Latorre M, Quesille-Villalobos AM, Maza F, Parra A, Reyes-Jara A. Synergistic effect of copper and low temperature over Listeria monocytogenes. Biometals. 2015;28(6):1087–92.

CAS  PubMed  Google Scholar 

Quesille-Villalobos AM, Parra A, Maza F, Navarrete P, González M, Latorre M, et al. The combined effect of cold and copper stresses on the proliferation and transcriptional response of Listeria monocytogenes. Front Microbiol. 2019;10:612.

PubMed  PubMed Central  Google Scholar 

Cordero N, Maza F, Navea-Perez H, Aravena A, Marquez-Fontt B, Navarrete P, et al. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front Microbiol. 2016;7:229.

PubMed  PubMed Central  Google Scholar 

Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J. 2019;13(3):789–804.

CAS  PubMed  Google Scholar 

Watanabe F, Bito T. Vitamin B(12) sources and microbial interaction. Exp Biol Med. 2018;243(2):148–58.

CAS  Google Scholar 

Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. Microbial and genetic resources for cobalamin (Vitamin B12) biosynthesis: from ecosystems to industrial biotechnology. Int J Mol Sci. 2021;22(9):4522.

CAS  PubMed  PubMed Central  Google Scholar 

Ahn AC, Jongepier E, Schuurmans JM, Rijpstra WIC, Sinninghe Damsté JS, Galinski EA, et al. Molecular and physiological adaptations to low temperature in Thioalkalivibrio strains isolated from soda lakes with different temperature regimes. mSystems. 2021;6(2):e01202.

CAS  PubMed  PubMed Central  Google Scholar 

Ahn AC, Cavalca L, Colombo M, Schuurmans JM, Sorokin DY, Muyzer G. transcriptomic analysis of two Thioalkalivibrio species under arsenite stress revealed a potential candidate gene for an alternative arsenite oxidation pathway. Front Microbiol. 2019;10:1514.

PubMed  PubMed Central  Google Scholar 

Fox EM, Leonard N, Jordan K. Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl Environ Microbiol. 2011;77(18):6559–69.

CAS  PubMed  PubMed Central  Google Scholar 

Casey A, Fox EM, Schmitz-Esser S, Coffey A, McAuliffe O, Jordan K. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Front Microbiol. 2014;5:68.

PubMed  PubMed Central  Google Scholar 

Mellin JR, Koutero M, Dar D, Nahori MA, Sorek R, Cossart P. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science. 2014;345(6199):940–3.

CAS  PubMed  Google Scholar 

Kipkorir T, Mashabela GT, de Wet TJ, Koch A, Wiesner L, Mizrahi V, et al. De novo cobalamin biosynthesis, transpo

留言 (0)

沒有登入
gif