Semi-automated approach for generation of biological networks on drug-induced cholestasis, steatosis, hepatitis, and cirrhosis

Silbergeld EK, Mandrioli D, Cranor CF (2015) Regulating chemicals: law, science, and the unbearable burdens of regulation. Annu Rev Public Health 36:175–191. https://doi.org/10.1146/annurev-publhealth-031914-122654

Article  PubMed  Google Scholar 

Van Norman GA (2019) Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl Sci 4:845–854. https://doi.org/10.1016/j.jacbts.2019.10.008

Article  PubMed  PubMed Central  Google Scholar 

Vall A, Sabnis Y, Shi J, Class R, Hochreiter S, Klambauer G (2021) The promise of AI for DILI prediction. Front Artif Intell 4:638410. https://doi.org/10.3389/frai.2021.638410

Article  PubMed  PubMed Central  Google Scholar 

Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1:206–215. https://doi.org/10.1038/s42256-019-0048-x

Article  Google Scholar 

Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165. https://doi.org/10.1016/j.tox.2013.08.011

CAS  Article  PubMed  Google Scholar 

Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320. https://doi.org/10.1093/toxsci/kfu199

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hardt C, Bauer C, Schuchhardt J, Herwig R (2018) Computational network analysis for drug toxicity prediction. In: von Stechow L, Santos Delgado A (eds) Computational cell biology: methods and protocols. Springer New York, New York, pp 335–355. https://doi.org/10.1007/978-1-4939-8618-7_16

Chapter  Google Scholar 

Rim KT (2021) Application of the adverse outcome pathway framework to predict the toxicity of chemicals in the semiconductor manufacturing industry. Mol Cell Toxicol 17:325–345. https://doi.org/10.1007/s13273-021-00139-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Doktorova TY, Oki NO, Mohorič T, Exner TE, Hardy B (2020) A semi-automated workflow for adverse outcome pathway hypothesis generation: the use case of non-genotoxic induced hepatocellular carcinoma. Regul Toxicol Pharmacol 114:104652. https://doi.org/10.1016/j.yrtph.2020.104652

CAS  Article  PubMed  Google Scholar 

Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921-D927. https://doi.org/10.1093/nar/gku955

CAS  Article  PubMed  Google Scholar 

Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9:S4. https://doi.org/10.1186/gb-2008-9-s1-s4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, Moustaid-Moussa N (2017) The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis 1863:1106–1114. https://doi.org/10.1016/j.bbadis.2016.07.019

CAS  Article  PubMed  Google Scholar 

Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35:459–473. https://doi.org/10.1080/01926230701311344

CAS  Article  PubMed  Google Scholar 

Wang G, Xiu P, Li F, Xin C, Li K (2014) Vitamin A supplementation alleviates extrahepatic cholestasis liver injury through Nrf2 activation. Oxid Med Cell Longev 2014:273692. https://doi.org/10.1155/2014/273692

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim DK, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou H (2002) The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 79:95–103. https://doi.org/10.1006/geno.2001.6678

CAS  Article  PubMed  Google Scholar 

Chung SY, Kao CH, Villarroya F, Chang HY, Chang HC, Hsiao SP, Liou G-G, Chen SL (2015) Bhlhe40 represses PGC-1α activity on metabolic gene promoters in myogenic cells. Mol Cell Biol 35:2518–2529. https://doi.org/10.1128/MCB.00387-15

CAS  Article  PubMed  PubMed Central  Google Scholar 

Erdel M, Weiskirchen R (1998) Assignment of CSRP1 encoding the LIM domain protein CRP1, to human chromosome 1q32 by fluorescence in situ hybridization. Cytogenet Cell Genet 83:10–11. https://doi.org/10.1159/000015152

CAS  Article  PubMed  Google Scholar 

Liu L, Wang Q, Wang Q, Zhao X, Zhao P, Geng T, Gong D (2018) Role of miR29c in goose fatty liver is mediated by its target genes that are involved in energy homeostasis and cell growth. BMC Vet Res 14:325. https://doi.org/10.1186/s12917-018-1653-3

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sierra-Ramos C, Velazquez-Garcia S, Vastola-Mascolo A, Hernández G, Faresse N, de la Alvarez D (2020) SGK1 activation exacerbates diet-induced obesity, metabolic syndrome and hypertension. Endocrinology 244:149–162. https://doi.org/10.1530/JOE-19-0275

CAS  Article  Google Scholar 

Liang YJ, Jiang JG (2015) Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production. RSC Adv 5:45558–45570. https://doi.org/10.1039/C5RA04635A

CAS  Article  Google Scholar 

Lahey R, Carley AN, Wang X, Glass CE, Accola KD, Silvestry S, O’Donnell JM, Lewandowski ED (2018) Enhanced redox state and efficiency of glucose oxidation with miR based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts. Circ Res 122:836–845. https://doi.org/10.1161/CIRCRESAHA.118.312660

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhu BH, Zhang RH, Lv NN, Yang GP, Wang YS, Pan KH (2018) The role of malic enzyme on promoting total lipid and fatty acid production in phaeodactylum tricornutum. Front Plant Sci 9:826. https://doi.org/10.3389/fpls.2018.00826

Article  PubMed  PubMed Central  Google Scholar 

Sookoian S, Castaño GO, Burgueño AL, Rosselli MS, Gianotti TF, Mallardi P, Martino JS, Pirola CJ (2010) Circulating levels and hepatic expression of molecular mediators of atherosclerosis in nonalcoholic fatty liver disease. Atherosclerosis 209:585–591. https://doi.org/10.1016/j.atherosclerosis.2009.10.011

CAS  Article  PubMed  Google Scholar 

Haukeland JW, Damås JK, Konopski Z, Løberg EM, Haaland T, Goverud I, Torjesen PA, Birkeland K, Bjøro K, Aukrust P (2006) Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. Hepatology 44:1167–1174. https://doi.org/10.1016/j.jhep.2006.02.011

CAS  Article  Google Scholar 

Bansal S, Biswas G, Avadhani NG (2013) Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol 2:273–283. https://doi.org/10.1152/ajprenal.00160.2013

CAS  Article  PubMed  PubMed Central  Google Scholar 

Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Mönnighoff I, Buchczyk D, Donner M, Flögel U, Kappert G, Soboll S, Beer S, Pfeffer K, Marschall H-U, Gabrielsen M, Amiry-Moghaddam M, Ottersen OP, Dienes HP, Häussinger D (2006) Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J 20:574–576. https://doi.org/10.1096/fj.05-5016fje

CAS  Article  PubMed  Google Scholar 

Banworth MJ, Li G (2018) Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 9:158–181. https://doi.org/10.1080/21541248.2017.1397833

Article  PubMed  Google Scholar 

Chou HC, Chen CH, Lee HS, Lee CZ, Huang GT, Yang PM, Lee PH, Sheu JC (2007) Alterations of tumour suppressor gene PPP2R1B in hepatocellular carcinoma. Cancer Lett 253:138–143. https://doi.org/10.1016/j.canlet.2007.01.016

CAS  Article  PubMed  Google Scholar 

Upadhyay A, Dixit U, Manvar D, Chaturvedi N, Pandey VN (2013) Affinity capture and identification of host cell factors associated with hepatitis C virus (+) strand subgenomic RNA. Mol Cell Proteomics 12:1539–1552. https://doi.org/10.1074/mcp.M112.017020

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gu JG, Zhu Cl, Cheng DZ, Xie Y, Liu F, Zhou X (2011) Enchanced levels of apolipoprotein M during HBV infection feedback suppresses HBV replication. Lipids Health Dis 10:154. https://doi.org/10.1186/1476-511X-10-154

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lubyova B, Hodek J, Zabransky A, Prouzova H, Hubalek M, Hirsch I, Weber J (2017) PRMT5: a novel regulator of hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE 12:e0186982. https://doi.org/10.1371/journal.pone.0186982

CAS  Article  PubMed  PubMed Central  Google Scholar 

Havis E, Duprez D (2020) EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int J Mol Sci 21:1664. https://doi.org/10.3390/ijms21051664

CAS  Article  PubMed Central  Google Scholar 

Li TZ, Kim SM, Hur W, Choi JE, Kim J-H, Hong SW, Lee EB, Lee JH, Yoon SK (2017) Elk-3 contributes to the progression of liver fibrosis by regulating the epithelial–mesenchymal transition. Gut Liver 11:102–111. https://doi.org/10.5009/gnl15566

CAS  Article  PubMed  Google Scholar 

Kostadinova RM, Nawrocki AR, Frey FJ, Frey BM (2005) Tumor necrosis factor alpha and phorbol 12-myristate-13-acetate down-regulate human 11β-hydroxysteroid dehydrogenase type 2 through p50/p50 NF-κB homodimers and Egr-1. FASEB J 19:1–30. https://doi.org/10.1096/fj.04-2820fje

CAS  Article  Google Scholar 

Escher G, Nawrocki A, Staub T, Vishwanath BS, Frey BM, Reichen J, Frey FJ (1998) Down-regulation of hepatic and renal 11β-hydroxysteroid dehydrogenase in rats with liver cirrhosis. Gastroenterology 114:175–184. https://doi.org/10.1016/S0016-5085(98)70645-6

CAS  Article  PubMed  Google Scholar 

Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, Bradford B, Caruso M, Gazova I, Sánchez A, Lisowski ZM, Alves J, Molina-Gonzalez I, Davtyan H, Lodge RJ, Glover JD, Wallace R, Munro DAD, David E, Amit I, Miron VE, Priller J, Jenkins SJ, Hardingham GE, Blurton-Jones M, Mabbott NA, Summers KM, Hohenstein P, Hume DA, Pridans C (2019) Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun 10:3215. https://doi.org/10.1038/s41467-019-11053-8

CAS  Article 

留言 (0)

沒有登入
gif