The N-terminal domain of TET1 promotes the formation of dense chromatin regions refractory to transcription

Bancaud A, Huet S, Daigle N et al (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28:3785–3798. https://doi.org/10.1038/emboj.2009.340

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bancaud A, Huet S, Rabut G, Ellenberg J (2010) Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb Protoc 2010:pdb.top90. https://doi.org/10.1101/pdb.top90

Bauer C, Göbel K, Nagaraj N et al (2015) Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-Linked N-acetylglucosamine transferase (OGT). J Biol Chem 290:4801–4812. https://doi.org/10.1074/jbc.M114.605881

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872. https://doi.org/10.1016/j.cell.2011.08.042

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

CAS  Article  PubMed  Google Scholar 

Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043. https://doi.org/10.1126/science.1076997

CAS  Article  Google Scholar 

Fierz B, Poirier MG (2019) Biophysics of chromatin dynamics. Annu Rev Biophys 48:321–345. https://doi.org/10.1146/annurev-biophys-070317-032847

CAS  Article  PubMed  Google Scholar 

Frauer C, Rottach A, Meilinger D et al (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS ONE 6:e16627. https://doi.org/10.1371/journal.pone.0016627

CAS  Article  PubMed  PubMed Central  Google Scholar 

Funayama R, Saito M, Tanobe H, Ishikawa F (2006) Loss of linker histone H1 in cellular senescence. J Cell Biol 175:869–880. https://doi.org/10.1083/jcb.200604005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Good CR, Madzo J, Patel B et al (2017) A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer. Nucleic Acids Res 45:8269–8281. https://doi.org/10.1093/nar/gkx435

CAS  Article  PubMed  PubMed Central  Google Scholar 

Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

Article  Google Scholar 

Hu L, Li Z, Cheng J et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555. https://doi.org/10.1016/j.cell.2013.11.020

CAS  Article  PubMed  Google Scholar 

Iguchi-Ariga SM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3:612–619. https://doi.org/10.1101/gad.3.5.612

CAS  Article  PubMed  Google Scholar 

Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. https://doi.org/10.1126/science.1210597

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jin S-G, Zhang Z-M, Dunwell TL et al (2016) Tet3 reads 5-carboxylcytosine through Its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14:493–505. https://doi.org/10.1016/j.celrep.2015.12.044

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lorsbach RB, Moore J, Mathew S et al (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641. https://doi.org/10.1038/sj.leu.2402834

CAS  Article  PubMed  Google Scholar 

Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338. https://doi.org/10.1074/jbc.C111.284620

CAS  Article  PubMed  PubMed Central  Google Scholar 

Misteli T, Gunjan A, Hock R et al (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881. https://doi.org/10.1038/35048610

CAS  Article  PubMed  Google Scholar 

Mulholland CB, Nishiyama A, Ryan J et al (2020) Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun 11:5972. https://doi.org/10.1038/s41467-020-19603-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Münzel M, Globisch D, Carell T (2011) 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 50:6460–6468. https://doi.org/10.1002/anie.201101547

CAS  Article  PubMed  Google Scholar 

Neri F, Incarnato D, Krepelova A et al (2015) TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Res 43:6814–6826. https://doi.org/10.1093/nar/gkv392

CAS  Article  PubMed  PubMed Central  Google Scholar 

Neumann B, Walter T, Hériché J-K et al (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727. https://doi.org/10.1038/nature08869

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ou HD, Phan S, Deerinck TJ, et al (2017) ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357:. https://doi.org/10.1126/science.aag0025

Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750. https://doi.org/10.1101/gad.276568.115

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rausch C, Hastert FD, Cardoso MC (2019) DNA Modification readers and writers and their interplay. J Mol Biol. https://doi.org/10.1016/j.jmb.2019.12.018

Article  PubMed  Google Scholar 

Rother MB, Pellegrino S, Smith R et al (2020) CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nat Commun 11:5775. https://doi.org/10.1038/s41467-020-19502-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shi F-T, Kim H, Lu W et al (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288:20776–20784. https://doi.org/10.1074/jbc.M113.460386

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

CAS  Article  PubMed  PubMed Central  Google Scholar 

Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18:115–126. https://doi.org/10.1038/nrm.2016.148

CAS  Article  PubMed  Google Scholar 

Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2:1136–1143. https://doi.org/10.1101/gad.2.9.1136

CAS  Article  PubMed  Google Scholar 

Wiles ET, Selker EU (2017) H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev 43:31–37. https://doi.org/10.1016/j.gde.2016.11.001

CAS  Article  PubMed  Google Scholar 

Willcockson MA, Healton SE, Weiss CN et al (2021) H1 histones control the epigenetic landscape by local chromatin compaction. Nature 589:293–298. https://doi.org/10.1038/s41586-020-3032-z

CAS  Article  PubMed  Google Scholar 

Wu H, D’Alessio AC, Ito S et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393. https://doi.org/10.1038/nature09934

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang W, Xia W, Wang Q et al (2016) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell 64:1062–1073. https://doi.org/10.1016/j.molcel.2016.10.030

CAS  Article  PubMed  Google Scholar 

Zhong J, Li X, Cai W et al (2017) TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res 45:672–684. https://doi.org/10.1093/nar/gkw919

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif