Increased peroxisome proliferation is associated with early yeast replicative ageing

Ayer A, Gourlay CW, Dawes IW (2014) Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res 14:60–72. https://doi.org/10.1111/1567-1364.12114

CAS  Article  PubMed  Google Scholar 

Azbarova AV, Galkina KV, Sorokin MI, Severin FF, Knorre DA (2017) The contribution of Saccharomyces cerevisiae replicative age to the variations in the levels of Trx2p, Pdr5p, Can1p and Idh isoforms. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-13576-w

CAS  Article  Google Scholar 

Banerjee R, Joshi N, Nagotu S (2020) Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 66:15–41. https://doi.org/10.1007/s00294-019-01035-0

CAS  Article  PubMed  Google Scholar 

Bernhardt D, Müller M, Reichert AS, Osiewacz HD (2015) Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Sci Rep 5:7885. https://doi.org/10.1038/srep07885

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bhattacharya S, Bouklas T, Fries BC (2020) Replicative aging in pathogenic fungi. J Fungi (basel) 7:6. https://doi.org/10.3390/jof7010006

CAS  Article  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chalermwat C, Thosapornvichai T, Jensen LT, Wattanasirichaigoon D (2020) Genetic analysis of peroxisomal genes required for longevity in a yeast model of citrin deficiency. Diseases 8:2. https://doi.org/10.3390/diseases8010002

CAS  Article  PubMed Central  Google Scholar 

Chen Y, Liu X, Zhao W, Cui H, Ruan J, Yuan Y, Tu Z (2017) MET18 deficiency increases the sensitivity of yeast to oxidative stress and shortens replicative lifespan by inhibiting catalase activity. BioMed Res Int 2017:7587395. https://doi.org/10.1155/2017/7587395

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cipolla CM, Lodhi IJ (2017) Peroxisomal dysfunction in age-related diseases. Trends Endocrinol Metab 28:297–308. https://doi.org/10.1016/j.tem.2016.12.003

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cohen G, Rapatz W, Ruis H (1988) Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem 176:159–163. https://doi.org/10.1111/j.1432-1033.1988.tb14263.x

CAS  Article  PubMed  Google Scholar 

Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807. https://doi.org/10.1038/nature08085

CAS  Article  PubMed  PubMed Central  Google Scholar 

Deb R, Nagotu S (2017) Versatility of peroxisomes: an evolving concept. Tissue Cell 49:209–226. https://doi.org/10.1016/j.tice.2017.03.002

CAS  Article  Google Scholar 

Denoth Lippuner A, Julou T, Barral Y (2014) Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 38:300–325. https://doi.org/10.1111/1574-6976.12060

CAS  Article  PubMed  Google Scholar 

Deori NM, Kale A, Maurya PK, Nagotu S (2018) Peroxisomes: role in cellular ageing and age related disorders. Biogerontology 19:303–324. https://doi.org/10.1007/s10522-018-9761-9

CAS  Article  Google Scholar 

Dhar R, Missarova AM, Lehner B, Carey LB (2019) Single cell functional genomics reveals the importance of mitochondria in cell-to-cell phenotypic variation. Elife 8:e38904. https://doi.org/10.7554/eLife.38904

Article  PubMed  PubMed Central  Google Scholar 

Epstein CB, Waddle JA, Hale W 4th, Davé V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308. https://doi.org/10.1091/mbc.12.2.297

CAS  Article  PubMed  PubMed Central  Google Scholar 

Erdmann R, Veenhuis M, Mertens D, Kunau WH (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:5419–5423. https://doi.org/10.1073/pnas.86.14.5419

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81. https://doi.org/10.1046/j.1474-9728.2003.00033.x

CAS  Article  PubMed  Google Scholar 

Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735. https://doi.org/10.1016/j.molcel.2010.08.015

CAS  Article  PubMed  PubMed Central  Google Scholar 

Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591. https://doi.org/10.1038/nature08197

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ghavidel A, Baxi K, Prusinkiewicz M, Swan C, Belak ZR, Eskiw CH, Carvalho CE, Harkness TA (2018) Rapid nuclear exclusion of Hcm1 in aging Saccharomyces cerevisiae leads to vacuolar alkalization and replicative senescence. G3 (bethesda, Md.) 8:1579–1592. https://doi.org/10.1534/g3.118.200161

CAS  Article  PubMed Central  Google Scholar 

Gietz RD, Akio S (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534. https://doi.org/10.1016/0378-1119(88)90185-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hadwan MH (2018) Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem 19:1–8. https://doi.org/10.1186/s12858-018-0097-5

CAS  Article  Google Scholar 

Hartig A, Ruis H (1986) Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T. Eur J Biochem 160:487–490. https://doi.org/10.1111/j.1432-1033.1986.tb10065.x

CAS  Article  PubMed  Google Scholar 

He C, Zhou C, Kennedy BK (2018) The yeast replicative aging model. Biochim Biophys Acta (BBA) Mol Basis Dis 1864:2690–2696. https://doi.org/10.1016/j.bbadis.2018.02.023

CAS  Article  Google Scholar 

Hendrickson DG, Soifer I, Wranik BJ, Kim G, Robles M, Gibney PA, McIsaac RS (2018) A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast. Elife 7:e39911. https://doi.org/10.7554/eLife.39911

Article  PubMed  PubMed Central  Google Scholar 

Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265. https://doi.org/10.1038/nature11654

CAS  Article  PubMed  PubMed Central  Google Scholar 

James J, Fiji N, Roy D, Andrew DMG, Shihabudeen MS, Chattopadhyay D, Thirumurugan K (2015) A rapid method to assess reactive oxygen species in yeast using H2DCF-DA. Anal Methods 7:8572–8575. https://doi.org/10.1039/C5AY02278A

CAS  Article  Google Scholar 

Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962. https://doi.org/10.1002/yea.1142

CAS  Article  PubMed  Google Scholar 

Janssens GE, Meinema AC, Gonzalez J, Wolters JC, Schmidt A, Guryev V, Bischoff R, Wit EC, Veenhoff LM, Heinemann M (2015) Protein biogenesis machinery is a driver of replicative aging in yeast. Elife 4:e08527. https://doi.org/10.7554/eLife.08527

Article  PubMed  PubMed Central  Google Scholar 

Jin X, Cao X, Liu B (2021) Isolation of aged yeast cells using biotin-streptavidin affinity purification. In: Yeast protocols. Springer

Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464:513–519. https://doi.org/10.1038/nature08981

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:e296. https://doi.org/10.1371/journal.pbio.0020296

CAS  Article  PubMed  PubMed Central  Google Scholar 

Knorre DA, Azbarova AV, Galkina KV, Feniouk BA, Severin FF (2018) Replicative aging as a source of cell heterogeneity in budding yeast. Mech Ageing Dev 176:24–31. https://doi.org/10.1016/j.mad.2018.09.001

CAS  Article  PubMed  Google Scholar 

Kumar S, de Boer R, van der Klei IJ (2018) Yeast cells contain a heterogeneous population of peroxisomes that segregate asymmetrically during cell division. J Cell Sci 131:jcs207522. https://doi.org/10.1242/jcs.207522

Article  PubMed  Google Scholar 

Kuravi K, Nagotu S, Krikken AM, Sjollema K, Deckers M, Erdmann R, Veenhuis M, Van Der Klei IJ (2006) Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J Cell Sci 119:3994–4001. https://doi.org/10.1242/jcs.03166

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lam YT, Aung-Htut MT, Lim YL, Yang H, Dawes IW (2011) Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radic Biol Med 50:963–970. https://doi.org/10.1016/j.freeradbiomed.2011.01.013

CAS  Article  PubMed  Google Scholar 

Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173. https://doi.org/10.1111/j.1365-2958.2001.02317.x

CAS  Article  PubMed  Google Scholar 

Lefev

留言 (0)

沒有登入
gif