Lateral Dermal Penetration is Dependent on the Lipophilicity of Active Ingredients

Skin Pharmacology and Physiology

Lubda M. · Zander M. · Salazar A. · Kolmar H. · von Hagen J.

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent/Cloud Rent for 48h to view Buy Cloud Access for unlimited viewing via different devices Synchronizing in the ReadCube Cloud Printing and saving restrictions apply Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

Introduction: With its large surface area skin facilitates a topical administration of active ingredients, and thus percutaneous delivery to a specific target site. Due to its high barrier function and different diffusion characteristics skin governs the efficacy of these active ingredients and a bioavailability in the epidermal and dermal tissue. Objective: In order to characterize the vertical and lateral movement of molecules into and inside the skin the diffusivity of active ingredients with different physico-chemical properties and their penetration ability in different dermal skin layers was investigated. Methods: A novel lateral dermal microdialysis (MD) penetration setup was used to compare the diffusion characteristics of active ingredients into superficial and deep implanted MD membranes in porcine skin. The corresponding membrane depth was determined via ultrasound and the active ingredients concentration via high-pressure liquid chromatography (HPLC) measurement. Results: The depth depended penetration of superficial and deep implanted MD membranes and the quantitative diffusivity of two active ingredients was compared. An experimental lateral MD setup was used to determine the influence of percutaneous skin penetration characteristics of an active ingredient with different lipophilic and hydrophilic characteristics. Therefore, hydrophilic caffeine and lipophilic LIP1, which have an identical molecular weight, but different lipophilic characteristics were tested for their penetration ability inside a propylene glycol (PG) and oleic acid (OA) formulation. Conclusion: The vertical and lateral penetration movement of caffeine was found to exceed that of LIP1 through the hydrophilic dermal environment. The findings of this study show that the lipophilicity of active ingredients influence the penetration movement and that skin enables a conical increasing lateral diffusivity and transdermal delivery.

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif