Dietary fat and carbohydrate affect the metabolism of protein-based high-density lipoprotein subspecies

Purpose of review 

Dietary fat compared to carbohydrate increases the plasma concentration of high-density lipoprotein (HDL)-cholesterol. However, neither the mechanism nor its connection to cardiovascular disease is known.

Recent findings 

Protein-based subspecies of HDL, especially those containing apolipoprotein E (apoE) or apolipoprotein C3 (apoC3), offer a glimpse of a vast metabolic system related to atherogenicity, coronary heart disease (CHD) and other diseases. ApoE stimulates several processes that define reverse cholesterol transport through HDL, specifically secretion of active HDL subspecies, cholesterol efflux to HDL from macrophages involved in atherogenesis, size enlargement of HDL with cholesterol ester, and rapid clearance from the circulation. Dietary unsaturated fat stimulates the flux of HDL that contains apoE through these protective pathways. Effective reverse cholesterol transport may lessen atherogenesis and prevent disease. In contrast, apoC3 abrogates the benefit of apoE on reverse cholesterol transport, which may account for the association of HDL that contains apoC3 with dyslipidemia, obesity and CHD.

Summary 

Dietary unsaturated fat and carbohydrate affect the metabolism of protein-defined HDL subspecies containing apoE or apoC3 accelerating or retarding reverse cholesterol transport, thus demonstrating new mechanisms that may link diet to HDL and to CHD.

留言 (0)

沒有登入
gif