Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis

1.

Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146–62.

PubMed  Google Scholar 

2.

Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2020;70(1):7–30.

Google Scholar 

3.

Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):25245–39.

4.

Casiano CA, Mediavilla-Varela M, Tan EM. Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol Cell Proteomics. 2006;5(10):1745–59.

PubMed  Google Scholar 

5.

Macdonald IK, Parsy-Kowalska CB, Chapman CJ. Autoantibodies: Opportunities for Early Cancer Detection. Trends Cancer. 2017;3(3):198–213.

PubMed  Google Scholar 

6.

Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009;276(23):6880–904.

PubMed  Google Scholar 

7.

Tan EM, Zhang J. Autoantibodies to tumor-associated antigens: reporters from the immune system. Immunol Rev. 2008;222:328–40.

PubMed Central  Google Scholar 

8.

Liu W, Peng B, Lu Y, Xu W, Qian W, Zhang JY. Autoantibodies to tumor-associated antigens as biomarkers in cancer immunodiagnosis. Autoimmun Rev. 2011;10(6):331–5.

Google Scholar 

9.

Potluri HK, Ng TL, Newton MA, et al Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages. J Immunother Cancer. 2020;8(2):e001510.

10.

Wang H, Zhang B, Li X, et al. Identification and Validation of Novel Serum Autoantibody Biomarkers for Early Detection of Colorectal Cancer and Advanced Adenoma. Front Oncol. 2020;10:1081.

PubMed  PubMed Central  Google Scholar 

11.

Soussi T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res. 2000;60(7):1777–88.

Google Scholar 

12.

Looi KS, Nakayasu ES, Diaz RA, Tan EM, Almeida IC, Zhang JY. Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma. J Proteome Res. 2008;7(9):4004–12.

PubMed  Google Scholar 

13.

Mustafa MZ, Nguyen VH, Le Naour F, et al. Autoantibody signatures defined by serological proteome analysis in sera from patients with cholangiocarcinoma. J Transl Med. 2016;14:17.

PubMed  PubMed Central  Google Scholar 

14.

Dai L, Li J, Tsay JJ, et al. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology. 2017;6(5):e1310359.

PubMed  PubMed Central  Google Scholar 

15.

Akhtar J, Priya R, Jain V, et al. Immunoproteomics approach revealed elevated autoantibody levels against ANXA1 in early stage gallbladder carcinoma. BMC Cancer. 2020;20(1):1175.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Dai L, Li J, Xing M, Sanchez TW, Casiano CA, Zhang JY. Using Serological Proteome Analysis to Identify Serum Anti-Nucleophosmin 1 Autoantibody as a Potential Biomarker in European-American and African-American Patients With Prostate Cancer. Prostate. 2016;76(15):1375–86.

PubMed  Google Scholar 

17.

Massa O, Alessio M, Russo L, et al. Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. J Proteomics. 2013;82:263–73.

PubMed  Google Scholar 

18.

Beutgen VM, Perumal N, Pfeiffer N, Grus FH. Autoantibody Biomarker Discovery in Primary Open Angle Glaucoma Using Serological Proteome Analysis (SERPA). Front Immunol. 2019;10:381.

CAS  PubMed  PubMed Central  Google Scholar 

19.

Zhu Q, Liu M, Dai L, et al. Using immunoproteomics to identify tumor-associated antigens (TAAs) as biomarkers in cancer immunodiagnosis. Autoimmun Rev. 2013;12(12):1123–8.

PubMed  Google Scholar 

20.

Poletaev A, Pukhalenko A, Kukushkin A, Sviridov P. Detection of Early Cancer: Genetics or Immunology? Serum Autoantibody Profiles as Markers of Malignancy. Anticancer Agents Med Chem. 2015;15(10):1260–3.

PubMed  Google Scholar 

21.

Zaenker P, Gray ES, Ziman MR. Autoantibody Production in Cancer--The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun Rev. 2016;15(5):477–83.

Google Scholar 

22.

Qiu J, Choi G, Li L, et al. Occurrence of autoantibodies to annexin I, 14-3-3 theta and LAMR1 in prediagnostic lung cancer sera. J Clin Oncol. 2008;26(31):5060–6.

PubMed  Google Scholar 

23.

Pastorczak A, Domka K, Fidyt K, Poprzeczko M, Firczuk M. Mechanisms of Immune Evasion in Acute Lymphoblastic Leukemia. Cancers (Basel). 2021;13(7):1536.

24.

Fulton KM, Ananchenko A, Wolfraim L, Martin S, Twine SM. Classical Immunoproteomics: Serological Proteome Analysis (SERPA) for Antigen Identification. Methods Mol Biol. 2019. 2024: 59-78.

25.

Qin J, Yang Q, Ye H, et al. Using Serological Proteome Analysis to Identify and Evaluate Anti-GRP78 Autoantibody as Biomarker in the Detection of Gastric Cancer. J Oncol. 2020. 2020: 9430737.

26.

Li L, Chen SH, Yu CH, Li YM, Wang SQ. Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray. J Proteome Res. 2008;7(2):611–20.

PubMed  Google Scholar 

27.

Yoneyama K, Kojima S, Kodani Y, et al. Proteomic identification of autoantibodies in sera from patients with ovarian cancer as possible diagnostic biomarkers. Anticancer Res. 2015;35(2):881–9.

PubMed  Google Scholar 

28.

Qin J, Wang S, Shi J, et al. Using recursive partitioning approach to select tumor-associated antigens in immunodiagnosis of gastric adenocarcinoma. Cancer Sci. 2019;110(6):1829–41.

PubMed  PubMed Central  Google Scholar 

29.

Zang R, Li Y, Jin R, et al. Enhancement of diagnostic performance in lung cancers by combining CEA and CA125 with autoantibodies detection. Oncoimmunology. 2019;8(10):e1625689.

PubMed  PubMed Central  Google Scholar 

30.

Vu LP, Prieto C, Amin EM, et al. Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells. Nat Genet. 2017;49(6):866–75.

Google Scholar 

31.

Weng X, Zheng S, Shui H, Lin G, Zhou Y. TUFM-knockdown inhibits the migration and proliferation of gastrointestinal stromal tumor cells. Oncol Lett. 2020;20(5):250.

CAS  PubMed  PubMed Central  Google Scholar 

32.

Hamrita B, Nasr HB, Hammann P, Kuhn L, Guillier CL, Chaieb A, Khairi H, Chahed K. An elongation factor-like protein (EF-Tu) elicits a humoral response in infiltrating ductal breast carcinomas: an immunoproteomics investigation. Clin Biochem. 2011;44(13):1097–104.

Google Scholar 

33.

Ye Y, Kuhn C, Kösters M, et al. Anti α-enolase antibody is a novel autoimmune biomarker for unexplained recurrent miscarriages. EBioMedicine. 2019;41:610–22.

PubMed  PubMed Central  Google Scholar 

34.

Lu Y, Qin J, Xiang Y, et al. Experimental evidence for alpha enolase as one potential autoantigen in the pathogenesis of both autoimmune thyroiditis and its related encephalopathy. Int Immunopharmacol. 2020;85:106563.

CAS  PubMed  Google Scholar 

35.

Wei P, Xing Y, Li B, Chen F, Hua H. Proteomics-based analysis indicating α-enolase as a potential biomarker in primary Sjögren’s syndrome. Gland Surg. 2020;9(6):2054–63.

PubMed  PubMed Central  Google Scholar 

36.

Zhan P, Zhao S, Yan H, et al. α-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Mol Carcinog. 2017;56(5):1427–37.

PubMed  Google Scholar 

37.

Li HJ, Ke FY, Lin CC, et al. ENO1 Promotes Lung Cancer Metastasis via HGFR and WNT Signaling-Driven Epithelial-to-Mesenchymal Transition. Cancer Res. 2021;81(15):4094–109.

PubMed  Google Scholar 

38.

Chang GC, Liu KJ, Hsieh CL, et al. Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res. 2006;12(19):5746–54.

PubMed  Google Scholar 

39.

Zhu W, Li H, Yu Y, et al. Enolase-1 serves as a biomarker of diagnosis and prognosis in hepatocellular carcinoma patients. Cancer Manag Res. 2018;10:5735–45.

PubMed  PubMed Central  Google Scholar 

40.

Principe M, Borgoni S, Cascione M, et al. Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis. J Hematol Oncol. 2017;10(1):16.

PubMed  PubMed Central  Google Scholar 

41.

Sun L, Lu T, Tian K, et al. Alpha-enolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway. Eur J Pharmacol. 2019;845:8–15.

PubMed  Google Scholar 

42.

Zhang L, Wang H, Dong X. Diagnostic value of α-enolase expression and serum α-enolase autoantibody levels in lung cancer. J Bras Pneumol. 2018;44(1):18–23.

PubMed  PubMed Central  Google Scholar 

43.

Cui JW, Li WH, Wang J, et al. Proteomics-based identification of human acute leukemia antigens that induce humoral immune response. Mol Cell Proteomics. 2005;4(11):1718–24.

PubMed  Google Scholar 

44.

Zou L, Wu Y, Pei L, et al. Identification of leukemia-associated antigens in chronic myeloid leukemia by proteomic analysis. Leuk Res. 2005;29(12):1387–91.

PubMed  Google Scholar 

45.

Ueda K, Nakanishi T, Shimizu A, Takubo T, Matsuura N. Identification of L-plastin autoantibody in plasma of patients with non-Hodgkin’s lymphoma using a proteomics-based analysis. Ann Clin Biochem. 2008;45(Pt 1):65–9.

PubMed  Google Scholar 

46.

Ray A, Song Y, Du T, Chauhan D, Anderson KC. Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma. Oncogene. 2020;39(13):2786–96.

PubMed  PubMed Central  Google Scholar 

47.

Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta. 2015;1848(10 Pt B):2547–75.

PubMed  Google Scholar 

48.

Shteinfer-Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan-Barmaz V. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life. 2021;73(3):492–510.

PubMed  Google Scholar 

49.

Shoshan-Barmatz V, Mizrachi D. VDAC1: from structure to cancer therapy. Front Oncol. 2012;2:164.

PubMed  PubMed Central  Google Scholar 

50.

Arif T, Vasilkovsky L, Refaely Y, Konson A, Shoshan-Barmatz V. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo. Mol Ther Nucleic Acids. 2014;3(4):e159.

PubMed  PubMed Central  Google Scholar 

51.

Arif T, Krelin Y, Nakdimon I, et al. VDAC1 is a molecular target in glioblastoma, with its depletion leading to reprogrammed metabolism and reversed oncogenic properties. Neuro Oncol. 2017;19(7):951–64.

PubMed  PubMed Central  Google Scholar 

52.

Arif T, Paul A, Krelin Y, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Mitochondrial VDAC1 Silencing Leads to Metabolic Rewiring and the Reprogramming of Tumour Cells into Advanced Differentiated States. Cancers (Basel). 2018;10(12):499.

53.

Liu X, He B, Xu T, et al. MiR-490-3p Functions As a Tumor Suppressor by Inhibiting Oncogene VDAC1 Expression in Colorectal Cancer. J Cancer. 2018;9(7):1218–30.

PubMed  PubMed Central  Google Scholar 

54.

Arif T, Stern O, Pittala S, Chalifa-Caspi V, Shoshan-Barmatz V. Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells. 2019;8(11):1330.

55.

Leanza L, Romio M, Becker KA, et al. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. Cancer Cell. 2017;31(4):516-531.e10.

留言 (0)

沒有登入
gif