Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes)

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 2015:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Article  Google Scholar 

Artoni RF, Bertollo LAC (2002) Evolutionary aspects of the ZZ/ZW sex chromosome system in the Characidae fish, genus Triportheus. A monophyletic state and NOR location on the W chromosome. Heredity 89:15–19. https://doi.org/10.1038/sj.hdy.6800081

CAS  Article  PubMed  Google Scholar 

Artoni RF, Falcão JN, Moreira-Filho O, Bertollo LA (2001) An uncommon condition for a sex chromosome system in Characidae fish. Distribution and differentiation of ZZ/ZW system in Triportheus. Chromosom Res 9:449–456. https://doi.org/10.1023/a:1011620226348

CAS  Article  Google Scholar 

Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102. https://doi.org/10.1016/j.tree.2008.09.010

Article  PubMed  Google Scholar 

Bertollo LAC, Cioffi MB, Moreira-Filho O (2015) Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, and dee Almeida-Toledo LF (eds) Fish cytogenetic techniques (Chondrichthyans and Teleosts), CRC Press, Inc, Endfield, pp 21–26. https://doi.org/10.1201/b18534-4

Bertollo LAC, Cavallaro ZIA (1992) Highly differentiated ZZ/ZW sex chromosome system in a Characidae fish, Triportheus guentheri. Cytogenet. Genome Res 60:60–63. https://doi.org/10.1159/000133296

CAS  Article  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cabral-de-Mello DC, Zrzavá M, Kubícková S, Rendón P, Marec F (2021) The role of satellite DNAs in genome architecture and sex chromosome evolution in Crambidae moths. Front Genet 12:661417. https://doi.org/10.3389/fgene.2021.661417

CAS  Article  PubMed  PubMed Central  Google Scholar 

Carneiro M, Ferrand N, Nachman MW (2009) Recombination and speciation: loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 181:593–606. https://doi.org/10.1534/genetics.108.096826

Article  PubMed  PubMed Central  Google Scholar 

Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128. https://doi.org/10.1038/sj.hdy.6800697

CAS  Article  PubMed  Google Scholar 

Charlesworth D (2017) Evolution of recombination rates between sex chromosomes. Phil Trans R Soc B 372:20160456. https://doi.org/10.1098/rstb.2016.0456

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cioffi MB, Moreira-Filho O, Almeida-Toledo LF, Bertollo LAC (2012a) The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J Fish Biol 80:2125–2139. https://doi.org/10.1111/j.1095-8649.2012.03272.x

CAS  Article  PubMed  Google Scholar 

Cioffi MB, Kejnovský E, Marquioni V, Poltronieri J, Molina WF, Diniz D, Bertollo LAC (2012b) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. Mol Cytogenet 5:28. https://doi.org/10.1186/1755-8166-5-28

CAS  Article  Google Scholar 

Crepaldi C, Martí E, Gonçalves ÉM, Martí DA, Parise-Maltempi PP (2021) Genomic differences between the sexes in a fish species seen through satellite DNAs. Front Genet 12:728670. https://doi.org/10.3389/fgene.2021.728670

CAS  Article  PubMed  PubMed Central  Google Scholar 

Crepaldi C, Parise-Maltempi PP (2020) Heteromorphic sex chromosomes and their DNA content in fish: an insight through satellite DNA accumulation in Megaleporinus elongatus. Cytogenet. Genome Res 160:38–46. https://doi.org/10.1159/000506265

CAS  Article  PubMed  Google Scholar 

Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10:627. https://doi.org/10.3390/genes10080627

CAS  Article  PubMed Central  Google Scholar 

Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364. https://doi.org/10.1016/S0044-8486(02)00057-1

CAS  Article  Google Scholar 

Diniz D, Laudicina A, Cioffi MB, Bertollo LAC (2008) Microdissection and whole chromosome painting. Improving sex chromosome analysis in Triportheus (Teleostei, Characiformes). Cytogenet. Genome Res 122:163–168. https://doi.org/10.1159/000163094

CAS  Article  PubMed  Google Scholar 

Diniz D, Laudicina A, Bertollo LAC (2009) Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae). Genet Mol Biol 32:37–41. https://doi.org/10.1590/S1415-47572009005000017

CAS  Article  PubMed  PubMed Central  Google Scholar 

dos Santos RZ, Calegari RM, Silva DMZA, Ruiz-Ruano FJ, Melo S, Oliveira C, Foresti F, Uliano-Silva M, Porto-Foresti F, Utsunomia R (2021) A long-term conserved satellite DNA that remains unexpanded in several genomes of characiformes fish is actively transcribed. Genome Biology and Evolution 13:evab002. https://doi.org/10.1093/gbe/evab002

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

CAS  Article  PubMed  PubMed Central  Google Scholar 

El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A (2021) Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci Adv 7:eabe8215. https://doi.org/10.1126/sciadv.abe8215

Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7(10):e1000234. https://doi.org/10.1371/journal.pbio.1000234

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ferretti ABSM, Milani D, Palacios-Gimenez OM, Ruiz-Ruano FJ, Cabral-de-Mello DC (2020) High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. Heredity 125:124–137. https://doi.org/10.1038/s41437-020-0327-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565

CAS  Article  PubMed  PubMed Central  Google Scholar 

Furo IO, Kretschmer R, dos Santos MS, Carvalho CA, Gunski RJ, O’Brien PCM, Ferguson-Smith MA, Cioffi MB, de Oliveira EHC (2017) Chromosomal mapping of repetitive DNAs in Myiopsitta monachus and Amazona aestiva (Psittaciformes, Psittacidae), with emphasis on the sex chromosomes. Cytogenet Genome Res 151:151–160. https://doi.org/10.1159/000464458

CAS  Article  Google Scholar 

Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes 8:230. https://doi.org/10.3390/genes8090230

CAS  Article  PubMed Central  Google Scholar 

Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res 146:153–170. https://doi.org/10.1159/000437008

CAS  Article  PubMed  Google Scholar 

Geraldes A, Ferrand N, Nachman MW (2006) Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 173:919–933. https://doi.org/10.1534/genetics.105.054106

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gunski RJ, Kretschmer R, de Souza MS, Furo IO, Barcellos SA, Costa AL, Cioffi MB, de Oliveira EHC, Garnero ADV (2019) Evolution of bird sex chromosomes narrated by repetitive sequences: unusual W chromosome enlargement in Gallinula melanops (Aves: Gruiformes: Rallidae). Cytogenet Genome Res 158:152–159. https://doi.org/10.1159/000501381

CAS  Article  PubMed  Google Scholar 

Henikoff S, Ahmad, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102. https://doi.org/10.1126/science.1062939

CAS  Article  PubMed  Google Scholar 

Infante C, Catanese G, Manchado M (2004) Phylogenetic relationships among ten sole species (Soleidae, Pleuronectiformes) from the Gulf of Cadiz (Spain) based on mitochondrial DNA sequences. Mar Biotechnol (NY) 6:612–624. https://doi.org/10.1007/s10126-004-3081-6

CAS  Article  Google Scholar 

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

CAS  Article  PubMed  PubMed Central  Google Scholar 

Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298. https://doi.org/10.1093/genetics/157.3.1293

CAS  Article  PubMed  PubMed Central  Google Scholar 

Malik HS, Vermaak D, Henikoff S (2002) Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci U S A 99:1449–1454. https://doi.org/10.1073/pnas.032664299

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mariguela TC, Roxo FF, Foresti F, Oliveira C (2016) Phylogeny and biogeography of Triportheidae (Teleostei: Characiformes) based on molecular data. Mol Phylogenet Evol 96:130–139. https://doi.org/10.1016/j.ympev.2015.11.018

CAS  Article  PubMed  Google Scholar 

Melo BF, Sidlauskas BL, Near TJ, Roxo FF, Ghezelayagh A, Ochoa LE, Stiassny LJ, Arroyave J, Chang J, Faircloth BC, MacGuigan DJ, Harrington RC, Benine RC, Burns MD, Hoekzema K, Sanches NC et al (2021) Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst Biol 71:78–92. https://doi.org/10.1093/sysbio/syab040

Article  PubMed  Google Scholar 

Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA, Vaz C (2016) PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 33:128–129. https://doi.org/10.1093/bioinformatics/btw582

CAS  Article  PubMed  Google Scholar 

Nambiar M, Smith GR (2016) Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 54:188–197. https://doi.org/10.1016/j.semcdb.2016.01.042

CAS  Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif