Should knee extension strength testing be implemented as a screening test for identifying probable and confirmed sarcopenia in older T2DM patients?

1.

Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.

2.

Key global findings 2021. The IDF Diabetes Atlas 10th Edition. ©2021 International Diabetes Federation. https://www.diabetes.org/.

3.

Umegaki H. Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr Gerontol Int. 2016;16(3):293–9. https://doi.org/10.1111/ggi.12688.

Article  PubMed  Google Scholar 

4.

Kalyani RR, Tra Y, Yeh H-C, Egan JM, Ferrucci L, Brancati FL. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes: results from the National Health and nutrition examination survey (NHANES), 1999–2002. J Am Geriatr Soc. 2013;61(5):769–75. https://doi.org/10.1111/jgs.12204.

Article  PubMed  PubMed Central  Google Scholar 

5.

Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, van Kranenburg J, Nilwik R, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92. https://doi.org/10.1016/j.jamda.2013.02.006.

Article  PubMed  Google Scholar 

6.

Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, et al. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013;1(2):106–14. https://doi.org/10.1016/S2213-8587(13)70046-9.

Article  PubMed  Google Scholar 

7.

Calvani R, Rodriguez-Mañas L, Picca A, Marini F, Biancolillo A, Laosa O, et al. The “metabolic biomarkers of frailty in older people with type 2 diabetes mellitus” (MetaboFrail) study: rationale, design and methods. Exp Gerontol. 2020;129:110782. https://doi.org/10.1016/j.exger.2019.110782.

Article  PubMed  Google Scholar 

8.

Corriere M, Rooparinesingh N, Kalyani RR. Epidemiology of Diabetes and Diabetes Complications in the Elderly: An Emerging Public Health Burden. Curr Diabetes Rep. 2013;13:805–13 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856245/.

Article  Google Scholar 

9.

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412–23. https://doi.org/10.1093/ageing/afq034.

Article  PubMed  PubMed Central  Google Scholar 

10.

Cui M, Gang X, Wang G, Xiao X, Li Z, Jiang Z, Wang G. A cross-sectional study: Associations between sarcopenia and clinical characteristics of patients with type 2 diabetes. Medicine (Baltimore). 2020;99(2):e18708.

11.

Mesinovic J, McMillan LB, Shore-Lorenti C, De Courten B, Ebeling PR, Scott D. Metabolic Syndrome and Its Associations with Components of Sarcopenia in Overweight and Obese Older Adults. J Clin Med. 2019;8(2):145.

12.

Murata Y, Kadoya Y, Yamada S, Sanke T. Sarcopenia in elderly patients with type 2 diabetes mellitus: prevalence and related clinical factors. Diabetol Int. 2017;9(2):136–42. https://doi.org/10.1007/s13340-017-0339-6.

Article  PubMed  PubMed Central  Google Scholar 

13.

Sinclair AJ, Abdelhafiz AH, Rodríguez-Mañas L. Frailty and sarcopenia - newly emerging and high impact complications of diabetes. J Diabetes Complicat. 2017;31(9):1465–73. https://doi.org/10.1016/j.jdiacomp.2017.05.003.

Article  Google Scholar 

14.

Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients. 2021;13(1):183.

15.

Mayhew AJ, Amog K, Phillips S, Parise G, McNicholas PD, de Souza RJ, et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56. https://doi.org/10.1093/ageing/afy106.

CAS  Article  PubMed  Google Scholar 

16.

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.

Article  Google Scholar 

17.

Samuel D, Rowe P, Hood V, Nicol A. The relationships between muscle strength, biomechanical functional moments and health-related quality of life in non-elite older adults. Age Ageing. 2012;41(2):224–30. https://doi.org/10.1093/ageing/afr156.

Article  PubMed  Google Scholar 

18.

Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care Am Diabetes Assoc. 2007;30(6):1507–12. https://doi.org/10.2337/dc06-2537.

Article  Google Scholar 

19.

Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543–8. https://doi.org/10.2337/diabetes.53.6.1543.

CAS  Article  PubMed  Google Scholar 

20.

Yeung SSY, Reijnierse EM, Trappenburg MC, Hogrel J-Y, McPhee JS, Piasecki M, et al. Handgrip strength cannot be assumed a proxy for overall muscle strength. J Am Med Dir Assoc. 2018;19(8):703–9. https://doi.org/10.1016/j.jamda.2018.04.019.

Article  PubMed  Google Scholar 

21.

IJzerman TH, Schaper NC, Melai T, Meijer K, Willems PJB, Savelberg HHCM. Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract. 2012;95(3):345–51. https://doi.org/10.1016/j.diabres.2011.10.026.

Article  PubMed  Google Scholar 

22.

Buckinx F, Croisier J-L, Charles A, Petermans J, Reginster J-Y, Rygaert X, et al. Normative data for isometric strength of 8 different muscle groups and their usefulness as a predictor of loss of autonomy among physically active nursing home residents: the SENIOR cohort. J Musculoskelet Neuronal Interact. 2019;19(3):258–65.

PubMed  PubMed Central  Google Scholar 

23.

Muff G, Dufour S, Meyer A, Severac F, Favret F, Geny B, et al. Comparative assessment of knee extensor and flexor muscle strength measured using a hand-held vs. isokinetic dynamometer. J Phys Ther Sci. 2016;28(9):2445–51. https://doi.org/10.1589/jpts.28.2445.

Article  PubMed  PubMed Central  Google Scholar 

24.

Mentiplay BF, Perraton LG, Bower KJ, Adair B, Pua Y-H, Williams GP, et al. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: a reliability and validity study. PLoS One. 2015;10(10):e0140822. https://doi.org/10.1371/journal.pone.0140822.

CAS  Article  PubMed  PubMed Central  Google Scholar 

25.

Chamorro C, Armijo-Olivo S, De la Fuente C, Fuentes J, Javier CL. Absolute reliability and concurrent validity of hand held dynamometry and isokinetic dynamometry in the hip, knee and ankle joint: systematic review and meta-analysis. Open Med (Wars). 2017;12(1):359–75. https://doi.org/10.1515/med-2017-0052.

Article  Google Scholar 

26.

Buckinx F, Croisier J-L, Reginster J-Y, Dardenne N, Beaudart C, Slomian J, et al. Reliability of muscle strength measures obtained with a hand-held dynamometer in an elderly population. Clin Physiol Funct Imaging. 2017;37(3):332–40. https://doi.org/10.1111/cpf.12300.

Article  PubMed  Google Scholar 

27.

Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019;10(3):183–7. https://doi.org/10.1007/s13340-019-00400-1.

Article  PubMed  PubMed Central  Google Scholar 

28.

Choquette S, Bouchard DR, Doyon CY, Sénéchal M, Brochu M, Dionne IJ. Relative strength as a determinant of mobility in elders 67–84 years of age. A nuage study: nutrition as a determinant of successful aging. J Nutr Health Aging. 2010;14(3):190–5. https://doi.org/10.1007/s12603-010-0047-4.

CAS  Article  PubMed  Google Scholar 

29.

Wearing J, Konings P, de Bie RA, Stokes M, de Bruin ED. Prevalence of probable sarcopenia in community-dwelling older Swiss people - a cross-sectional study. BMC Geriatr. 2020;20(1):307. https://doi.org/10.1186/s12877-020-01718-1.

Article  PubMed  PubMed Central  Google Scholar 

30.

Buch A, Eldor R, Kis O, Keinan-Boker L, Dunsky A, Rubin A, et al. The effect of circuit resistance training, empagliflozin or “vegeterranean diet” on physical and metabolic function in older subjects with type 2 diabetes: a study protocol for a randomized control trial (CEV-65 trial). BMC Geriatr. 2019;19(1):228. https://doi.org/10.1186/s12877-019-1219-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

31.

Ling CHY, de Craen AJM, Slagboom PE, Gunn DA, Stokkel MPM, Westendorp RGJ, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30(5):610–5. https://doi.org/10.1016/j.clnu.2011.04.001.

Article  PubMed  Google Scholar 

32.

Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–57. https://doi.org/10.1093/gerona/56.3.M146.

CAS  Article  Google Scholar 

33.

Bohannon RW, Wikholm JB. Measurements of knee extension force obtained by two examiners of substantially different experience with a hand-held dynamometer. Isokinet Exerc Sci IOS Press. 1992;2(1):5–8. https://doi.org/10.3233/IES-1992-2101.

Article  Google Scholar 

34.

Martien S, Delecluse C, Boen F, Seghers J, Pelssers J, Van Hoecke A-S, et al. Is knee extension strength a better predictor of functional performance than handgrip strength among older adults in three different settings. Arch Gerontol Geriatr. 2015;60(2):252–8. https://doi.org/10.1016/j.archger.2014.11.010.

Article  PubMed  Google Scholar 

35.

Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002;26(12):1596–609.

CAS  Article  Google Scholar 

36.

Domholdt E. Physical therapy research: principles and applications. 2nd ed. Philadelophia: WB Saunders Co.; 2000.

Google Scholar 

37.

Villani A, McClure R, Barrett M, Scott D. Diagnostic differences and agreement between the original and revised European working group (EWGSOP) consensus definition for sarcopenia in community-dwelling older adults with type 2 diabetes mellitus. Arch Gerontol Geriatr. 2020;89:104081. https://doi.org/10.1016/j.archger.2020.104081.

Article  PubMed  Google Scholar 

38.

de Freitas MM, de Oliveira VLP, Grassi T, Valduga K, Miller MEP, Schuchmann RA, et al. Difference in sarcopenia prevalence and associated factors according to 2010 and 2018 European consensus (EWGSOP) in elderly patients with type 2 diabetes mellitus. Exp Gerontol. 2020;132:110835. https://doi.org/10.1016/j.exger.2020.110835.

Article  PubMed  Google Scholar 

39.

Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: a systematic review and Meta-analysis. Calcif Tissue Int. 2020;107(5):453–63. https://doi.org/10.1007/s00223-020-00742-y.

CAS  Article  PubMed  Google Scholar 

40.

Chen F, Xu S, Wang Y, Chen F, Cao L, Liu T, et al. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J Diabetes Res. 2020;2020:3950404–10. https://doi.org/10.1155/2020/3950404.

CAS  Article  PubMed  PubMed Central  Google Scholar 

41.

Wang T, Feng X, Zhou J, Gong H, Xia S, Wei Q, Hu X, Tao R, Li L, Qian F, Yu L. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep. 2016;6:38937.

42.

Reiss J, Iglseder B, Alzner R, Mayr-Pirker B, Pirich C, Kässmann H, et al. Consequences of applying the new EWGSOP2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing. 2019;48(5):719–24. https://doi.org/10.1093/ageing/afz035

留言 (0)

沒有登入
gif