Programmable Biosensors Based on RNA-Guided CRISPR/Cas Endonuclease

1.

Shapiro M, London B, Nigri D, Shoss A, Zilber E, Fogel I. Middle East respiratory syndrome coronavirus: review of the current situation in the world. Disaster Mil Med. 2016;2:9.

PubMed  PubMed Central  Google Scholar 

2.

Aleanizy FS, Mohmed N, Alqahtani FY, El Hadi Mohamed RA. Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study. BMC Infect Dis. 2017;17:23.

PubMed  PubMed Central  Google Scholar 

3.

Shehata MM, Gomaa MR, Ali MA, Kayali G. Middle East respiratory syndrome coronavirus: a comprehensive review. Front Med. 2016;10:120–36.

PubMed  PubMed Central  Google Scholar 

4.

Groneberg DA, Hilgenfeld R, Zabel P. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir Res. 2005;6:8.

PubMed  PubMed Central  Google Scholar 

5.

Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

CAS  PubMed  PubMed Central  Google Scholar 

6.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

CAS  PubMed  PubMed Central  Google Scholar 

7.

Ayittey FK, Ayittey MK, Chiwero NB, Kamasah JS, Dzuvor C. Economic impacts of Wuhan 2019-nCoV on China and the world. J Med Virol. 2020;92:473–5.

CAS  PubMed  PubMed Central  Google Scholar 

8.

Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Müller C, et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip. 2010;10:887–93.

CAS  PubMed  Google Scholar 

9.

Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS biol. 2006;4:e204.

PubMed  PubMed Central  Google Scholar 

10.

Huang C-H, Lee K-C, Doudna JA. Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends Cancer. 2018;4:499–512.

CAS  PubMed  PubMed Central  Google Scholar 

11.

Sashital DG. Pathogen detection in the CRISPR-Cas era. Genome Med. 2018;10:32.

PubMed  PubMed Central  Google Scholar 

12.

Pawluk A. CRISPR: No Sign of Slowing Down. Cell. 2018;174:1039–41.

CAS  PubMed  Google Scholar 

13.

Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong E, et al. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal Chem. 2020;92:4029–37.

CAS  PubMed  Google Scholar 

14.

Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R, Patterson JL, et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sens. 2019;4:1048–54.

CAS  PubMed  Google Scholar 

15.

Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–44.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Chang W, Liu W, Liu Y, Zhan F, Chen H, Lei H, et al. Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Mikrochim Acta. 2019;186:243.

PubMed  Google Scholar 

17.

Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell. 2016;165:1255–66.

CAS  PubMed  Google Scholar 

18.

Li L, Li S, Wu N, Wu J, Wang G, Zhao G, et al. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth Biol. 2019;8:2228–37.

CAS  PubMed  Google Scholar 

19.

Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38:870–4.

CAS  PubMed  Google Scholar 

20.

Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, et al. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv Mater. 2019;31.

21.

Chen Q, Tian T, Xiong E, Wang P, Zhou X. CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection. Anal Chem. 2020;92:573–7.

22.

Qiu XY, Zhu LY, Zhu CS, Ma JX, Hou T, Wu XM, et al. Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synth Biol. 2018;7:807–13.

CAS  PubMed  Google Scholar 

23.

Zhang Y, Qian L, Wei W, Wang Y, Wang B, Lin P, et al. Paired Design of dCas9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth Biol. 2017;6:211–6.

CAS  PubMed  Google Scholar 

24.

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360:436–9.

CAS  PubMed  PubMed Central  Google Scholar 

25.

Wang B, Wang R, Wang D, Wu J, Li J, Wang J, Liu H, Wang Y. Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection. Anal Chem. 2019;91:12156–61.

26.

Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–42.

CAS  PubMed  PubMed Central  Google Scholar 

27.

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

PubMed  Google Scholar 

28.

Chen JS, Doudna JA. The chemistry of Cas9 and its CRISPR colleagues. Nat Rev Chem. 2017;1:0078.

CAS  Google Scholar 

29.

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.

CAS  PubMed  PubMed Central  Google Scholar 

30.

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

CAS  PubMed  PubMed Central  Google Scholar 

31.

Ikeda A, Fujii W, Sugiura K, Naito K. High-fidelity endonuclease variant HypaCas9 facilitates accurate allele-specific gene modification in mouse zygotes. Commun Biol. 2019;2:371.

PubMed  PubMed Central  Google Scholar 

32.

Ran FA, Hsu Patrick D, Lin CY, Gootenberg Jonathan S, Konermann S, Trevino AE, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. 2013;154:1380–9.

CAS  PubMed  PubMed Central  Google Scholar 

33.

Shmakov S, Abudayyeh Omar O, Makarova Kira S, Wolf Yuri I, Gootenberg Jonathan S, Semenova E, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015;60:385–97.

CAS  PubMed  PubMed Central  Google Scholar 

34.

Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467–77.

CAS  PubMed  Google Scholar 

35.

Lee SH, Yu J, Hwang GH, Kim S, Kim HS, Ye S, et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene. 2017;36:6823–9.

CAS  PubMed  PubMed Central  Google Scholar 

36.

Zhang B, Xia Q, Wang Q, Xia X, Wang J. Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique. Anal Biochem. 2018;561–562:37–46.

PubMed  Google Scholar 

37.

Zhang B, Wang Q, Xu X, Xia Q, Long F, Li W, et al. Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique. Anal Bioanal Chem. 2018;410:2889–900.

CAS  PubMed  Google Scholar 

38.

Huang M, Zhou X, Wang H, Xing D. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Anal Chem. 2018;90:2193–200.

CAS  PubMed  Google Scholar 

39.

Wang H, Wang H, Liu C, Duan X, Li Z. Ultrasensitive detection of telomerase activity in a single cell using stem-loop primer-mediated exponential amplification (SPEA) with near zero non-specific signal. Chem sci. 2016;7:4945–50.

PubMed  PubMed Central  Google Scholar 

40.

Zhang K, Deng R, Li Y, Zhang L, Li J. Cas9 cleavage assay for pre-screening of sgRNAs using nicking triggered isothermal amplification. Chem Sci. 2016;7:4951–7.

CAS  PubMed  PubMed Central  Google Scholar 

41.

Li Y, Li S, Wang J, Liu G. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019;37:730–43.

PubMed  Google Scholar 

42.

Batista AC, Pacheco LGC. Detecting pathogens with Zinc-Finger, TALE and CRISPR- based programmable nucleic acid binding proteins. J Microbiol Methods. 2018;152:98–104.

CAS  PubMed  Google Scholar 

43.

Yang W, Restrepo-Pérez L, Bengtson M, Heerema SJ, Birnie A, van der Torre J, et al. Detection of CRISPR-dCas9 on DNA with Solid-State Nanopores. Nano Lett. 2018;18:6469–74.

CAS  PubMed  PubMed Central  Google Scholar 

44.

Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu XF. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun. 2018;9:5012.

PubMed  PubMed Central  Google Scholar 

45.

Abudayye

留言 (0)

沒有登入
gif