Identifying the potential role of IL-1β in the molecular mechanisms of disc degeneration using gene expression profiling and bioinformatics analysis

1. Vergroesen, PP, Kingma, I, Emanuel, KS, et al. Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 2015; 23(7): 1057–1070.
Google Scholar | Crossref | Medline2. Liao, Z, Wu, X, Song, Y, et al. Angiopoietin‐like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. J Cell Mol Med 2019; 23(8): 5737–5750.
Google Scholar | Crossref | Medline3. Teraguchi, M, Yoshimura, N, Hashizume, H, et al. Progression, incidence, and risk factors for intervertebral disc degeneration in a longitudinal population-based cohort: the Wakayama Spine Study. Osteoarthr Cartil 2017; 25(7): 1122–1131.
Google Scholar | Crossref | Medline4. Dario, AB, Ferreira, ML, Refshauge, KM, et al. The relationship between obesity, low back pain, and lumbar disc degeneration when genetics and the environment are considered: a systematic review of twin studies. Spine J 2015; 15(5): 1106–1117.
Google Scholar | Crossref | Medline5. Sivan, SS, Wachtel, E, Roughley, P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta 2014; 1840(10): 3181–3189.
Google Scholar | Crossref | Medline | ISI6. Hangai, M, Kaneoka, K, Kuno, S, et al. Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J 2008; 8(5): 732–740.
Google Scholar | Crossref | Medline | ISI7. Wang, YXJ . Postmenopausal Chinese women show accelerated lumbar disc degeneration compared with Chinese men. J Orthop Translat 2015; 3(4): 205–211.
Google Scholar | Crossref | Medline8. Zhao, L, Manchikanti, L, Kaye, AD, et al. Treatment of discogenic low back pain: current treatment strategies and future options-a literature review. Curr Pain Headache Rep 2019; 23(11): 86.
Google Scholar | Crossref | Medline9. Sampara, P, Banala, RR, Vemuri, SK, et al. Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: a review. Gene Ther 2018; 25(2): 67–82.
Google Scholar | Crossref | Medline10. Zhang, Y, He, F, Chen, Z, et al. Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging 2019; 11(22): 10499–10512.
Google Scholar | Crossref | Medline11. Wang, K, Chen, T, Ying, X, et al. Ligustilide alleviated IL-1β induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo. Int Immunopharmacol 2019; 69: 398–407.
Google Scholar | Crossref | Medline12. Gorth, DJ, Shapiro, IM, Risbud, MV. A new understanding of the role of IL‐1 in age‐related intervertebral disc degeneration in a murine model. J Bone Miner Res 2019; 34(8): 1531–1542.
Google Scholar | Crossref | Medline13. Risbud, MV, Shapiro, IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 2014; 10(1): 44–56.
Google Scholar | Crossref | Medline | ISI14. Tu, J, Li, W, Zhang, Y, et al. Simvastatin inhibits IL-1β-induced apoptosis and extracellular matrix degradation by suppressing the NF-kB and MAPK pathways in Nucleus Pulposus Cells. Inflammation 2017; 40(3): 725–734.
Google Scholar | Crossref | Medline15. Huang, KY, Hsu, YH, Chen, WY, et al. The roles of IL-19 and IL-20 in the inflammation of degenerative lumbar spondylolisthesis. J Inflamm 2018; 15: 19.
Google Scholar | Crossref16. Le Maitre, CL, Hoyland, JA, Freemont, AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile. Arthritis Res Ther 2007; 9(4): R77.
Google Scholar | Crossref | Medline | ISI17. Gruber, HE, Hoelscher, GL, Bethea, S, et al. Interleukin 1-beta upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells. Biotech Histochem 2012; 87(8): 506–511.
Google Scholar | Crossref | Medline18. Ritchie, ME, Phipson, B, Wu, D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
Google Scholar | Crossref | Medline | ISI19. Huang, DW, Sherman, BT, Tan, Q, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007; 8(9): R183.
Google Scholar | Crossref | Medline20. Mootha, VK, Lindgren, CM, Eriksson, KF, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genetics 2003; 34(3): 267–273.
Google Scholar | Crossref | Medline | ISI21. Szklarczyk, D, Franceschini, A, Wyder, S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(Database issue): D447–D452.
Google Scholar | Crossref | Medline | ISI22. Zhou, Y, Zhou, B, Pache, L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Communicat 2019; 10(1): 1523.
Google Scholar | Crossref | Medline23. Lai, Y, Zhang, F, Nayak, TK, et al. Concordant integrative gene set enrichment analysis of multiple large-scale two-sample expression data sets. BMC Genomics 2014; 15 Suppl 1(Suppl 1): S6.
Google Scholar | Crossref | Medline24. Subramanian, A, Tamayo, P, Mootha, VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550.
Google Scholar | Crossref | Medline | ISI25. Zhao, C, Quan, X, He, J, et al. Identification of significant gene biomarkers of low back pain caused by changes in the osmotic pressure of nucleus pulposus cells. Scient Rep 2020; 10(1): 3708.
Google Scholar | Crossref | Medline26. Emmert-Streib, F, Zhang, SD, Hamilton, P. Computational cancer biology: education is a natural key to many locks. BMC Cancer 2015; 15: 7.
Google Scholar | Crossref | Medline27. Ferté, C, Trister, AD, Huang, E, et al. Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology. Clin Cancer Res 2013; 19(16): 4315–4325.
Google Scholar | Crossref | Medline28. Phillips, KL, Cullen, K, Chiverton, N, et al. Potential roles of cytokines and chemokines in human intervertebral disc degeneration: interleukin-1 is a master regulator of catabolic processes. Osteoarthrit Cartil 2015; 23(7): 1165–1177.
Google Scholar | Crossref | Medline29. White, GE, Iqbal, AJ, Greaves, DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65(1): 47–89.
Google Scholar | Crossref | Medline30. Beider, K, Abraham, M, Peled, A. Chemokines and chemokine receptors in stem cell circulation. Front Biosci 2008; 13: 6820–6833.
Google Scholar | Crossref | Medline31. Zhang, Y, Chee, A, Shi, P, et al. Intervertebral disc cells produce interleukins found in patients with back pain. Am J Phys Med Rehabil 2016; 95(6): 407–415.
Google Scholar | Crossref | Medline32. Pattappa, G, Peroglio, M, Sakai, D, et al. CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur Cell Mater 2014; 27: 124–136, discussion 36.
Google Scholar | Crossref | Medline33. Grad, S, Bow, C, Karppinen, J, et al. Systemic blood plasma CCL5 and CXCL6: potential biomarkers for human lumbar disc degeneration. Eur Cell Mater 2016; 31: 1–10.
Google Scholar | Crossref | Medline34. Zhang, W, Nie, L, Wang, Y, et al. CCL20 secretion from the nucleus pulposus improves the recruitment of CCR6-expressing Th17 cells to degenerated IVD tissues. PloS One 2013; 8(6): e66286.
Google Scholar | Crossref | Medline35. Zhang, Y, Liu, L, Wang, S, et al. Production of CCL20 on nucleus pulposus cells recruits IL-17-producing cells to degenerated IVD tissues in rat models. J Mol Histol 2016; 47(1): 81–89.
Google Scholar | Crossref | Medline36. Sadowska, A, Touli, E, Hitzl, W, et al. Inflammaging in cervical and lumbar degenerated intervertebral discs: analysis of proinflammatory cytokine and TRP channel expression. Eur Spine J 2018; 27(3): 564–577.
Google Scholar | Crossref | Medline37. Navone, SE, Marfia, G, Giannoni, A, et al. Inflammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol Histopathol 2017; 32(6): 523–542.
Google Scholar | Medline38. Molinos, M, Almeida, CR, Caldeira, J, et al. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interf 2015; 12(104): 20141191.
Google Scholar | Crossref | Medline39. Gabr, MA, Jing, L, Helbling, AR, et al. Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells. J Orthop Res 2011; 29(1): 1–7.
Google Scholar | Crossref | Medline40. Huang, KY, Lin, RM, Chen, WY, et al. IL-20 may contribute to the pathogenesis of human intervertebral disc herniation. Spine 2008; 33(19): 2034–2040.
Google Scholar | Crossref | Medline41. Smith, LJ, Chiaro, JA, Nerurkar, NL, et al. Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long-term agarose culture. Eur Cell Mater 2011; 22: 291–301.
Google Scholar | Crossref | Medline42. Hoyland, JA, Le Maitre, C, Freemont, AJ. Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology 2008; 47(6): 809–814.
Google Scholar | Crossref | Medline | ISI43. Séguin, CA, Pilliar, RM, Roughley, PJ, et al. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 2005; 30(17): 1940–1948.
Google Scholar | Crossref | Medline | ISI44. Séguin, CA, Pilliar, RM, Madri, JA, et al. TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine 2008; 33(4): 356–365.
Google Scholar | Crossref | Medline | ISI45. Altun, I. . Cytokine profile in degenerated painful intervertebral disc: variability with respect to duration of symptoms and type of disease. Spine J 2016; 16(7): 857–861.
Google Scholar | Crossref | Medline46. Schroeder, M, Viezens, L, Schaefer, C, et al. Chemokine profile of disc degeneration with acute or chronic pain. J Neurosurg Spine 2013; 18(5): 496–503.
Google Scholar | Crossref | Medline47. Wang, F, Cai, F, Shi, R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthr and Cartil 2016; 24(3): 398–408.
Google Scholar

留言 (0)

沒有登入
gif