In vitro drug release and antibacterial activity evaluation of silk fibroin coated vancomycin hydrochloride loaded poly (lactic-co-glycolic acid) (PLGA) sustained release microspheres

1. Fily, F, Ronat, JB, Malou, N, et al. Post-traumatic osteomyelitis in Middle East war-wounded civilians: resistance to first-line antibiotics in selected bacteria over the decade 2006–2016. BMC Infect Dis 2019; 19: 103. DOI: 10.1186/s12879-019-3741-9.
Google Scholar | Crossref | Medline2. Bevin, CR, Inwards, CY, Keller, EE. Surgical management of primary chronic osteomyelitis: a long-term retrospective analysis. J Oral Maxillofac Surg 2008; 66: 2073–2085. DOI: 10.1016/j.joms.2008.06.029.
Google Scholar | Crossref | Medline3. Bernard, L, Vaudaux, P, Vuagnat, A, et al. Effect of vancomycin therapy for osteomyelitis on colonization by methicillin-resistant staphylococcus aureus: lack of emergence of glycopeptide resistance. Infect Control Hosp Epidemiol 2003; 24: 650–654. DOI: 10.1086/502268.
Google Scholar | Crossref | Medline4. Zhou, J, Fang, T, Wen, J, et al. Silk coating on poly(ε-caprolactone) microspheres for the delayed release of vancomycin. J Microencapsul 2011; 28: 99–107. DOI: 10.3109/02652048.2010.534824.
Google Scholar | Crossref | Medline5. Lazzarini, L, Mader, JT, Calhoun, JH. Osteomyelitis in long bones. J Bone Joint Surg 2004; 86: 2305–2318. DOI: 10.2106/00004623-200410000-00028.
Google Scholar | Crossref | Medline | ISI6. Spellberg, B, Lipsky, BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis 2012; 54: 393–407. DOI: 10.1093/cid/cir842.
Google Scholar | Crossref | Medline | ISI7. Dudareva, M, Kümin, M, Vach, W, et al. Short or long antibiotic regimes in orthopaedics (SOLARIO): a randomised controlled open-label non-inferiority trial of duration of systemic antibiotics in adults with orthopaedic infection treated operatively with local antibiotic therapy. Trials 2019; 20: 693. DOI: 10.1186/s13063-019-3832-3.
Google Scholar | Crossref | Medline8. Resende, AFC, Pereira, AF, Moreira, TP, et al. PLGA implants containing vancomycin and dexamethasone: development, characterization and bactericidal effects. Die Pharmazie 2016; 71: 439–446, Article. DOI: 10.1691/ph.2016.6009.
Google Scholar | Crossref | Medline9. Ucak, S, Sudagidan, M, Borsa, BA, et al. Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World J Microbiol Biotechnol 2020; 36. DOI: 10.1007/s11274-020-02845-y.
Google Scholar | Crossref | Medline10. Yousry, C, Fahmy, RH, Essam, T, et al. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev Ind Pharm 2016; 42: 1752–1762. DOI: 10.3109/03639045.2016.1171335.
Google Scholar | Crossref | Medline11. Yu, X, Pan, Q, Zheng, Z, et al. pH-responsive and porous vancomycin-loaded PLGA microspheres: evidence of controlled and sustained release for localized inflammation inhibition in vitro. Rsc Adv 2018; 8: 37424–37432, Article. DOI: 10.1039/c8ra06659k.
Google Scholar | Crossref12. Buchholz, H, Elson, R, Engelbrecht, E, et al. Management of deep infection of total hip replacement. J Bone Joint Surg Br Volume 1981; 63-b: 342–353. DOI: 10.1302/0301-620x.63b3.7021561.
Google Scholar | Crossref | Medline13. Gerhart, TN, Roux, RD, Horowitz, G, et al. Antibiotic release from an experimental biodegradable bone cement. J Orthopaedic Res 1988; 6: 585–592. DOI: 10.1002/jor.1100060417.
Google Scholar | Crossref | Medline14. Wentao, Z, Lei, G, Liu, Y, et al. Approach to osteomyelitis treatment with antibiotic loaded PMMA. Microb Pathog 2017; 102: 42–44. DOI: 10.1016/j.micpath.2016.11.016.
Google Scholar | Crossref | Medline15. Özalp, Y, Özdemir, N, Hasirci, V. Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks. J Microencapsul 2002; 19: 83–94. DOI: 10.1080/02652040110065404.
Google Scholar | Crossref | Medline16. Wan, F, Maltesen, MJ, Andersen, SK, et al. One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle. Pharm Res 2014; 31: 1967–1977. DOI: 10.1007/s11095-014-1299-1.
Google Scholar | Crossref | Medline17. Péan, JM, Venier-Julienne, MC, Boury, F, et al. NGF release from poly(D,L-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. J Control Release 1998; 56: 175–187. DOI: 10.1016/s0168-3659(98)00086-8.
Google Scholar | Crossref | Medline | ISI18. Desai, KGH, Schwendeman, SP. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release 2013; 165: 62–74. DOI: 10.1016/j.jconrel.2012.10.012.
Google Scholar | Crossref | Medline19. Kim, I, Byeon, HJ, Kim, TH, et al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials 2013; 34: 6444–6453. DOI: 10.1016/j.biomaterials.2013.05.018.
Google Scholar | Crossref | Medline20. Oh, YJ, Lee, J, Seo, JY, et al. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Control Release 2011; 150: 56–62. DOI: 10.1016/j.jconrel.2010.11.001.
Google Scholar | Crossref | Medline21. Rumian, Ł, Tiainen, H, Cibor, U, et al. Ceramic scaffolds with immobilized vancomycin-loaded poly(lactide-co-glycolide) microparticles for bone defects treatment. Mater Lett 2017; 190: 67–70. DOI: 10.1016/j.matlet.2016.12.113.
Google Scholar | Crossref22. Wang, L, Yang, Q, Chen, Y, et al. A reformative shear precipitation procedure for the fabrication of vancomycin-loaded poly(lactide-co-glycolide) microspheres. J Biomater Appl 2017; 31: 995–1009. DOI: 10.1177/0885328216689199.
Google Scholar | SAGE Journals | ISI23. Du, L, Yang, S, Li, W, et al. Scaffold composed of porous vancomycin-loaded poly(lactide- co -glycolide) microspheres: A controlled-release drug delivery system with shape-memory effect. Mater Sci Eng C 2017; 78: 1172–1178. DOI: 10.1016/j.msec.2017.04.099.
Google Scholar | Crossref | Medline24. Huang, W, Ling, S, Li, C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 2018; 47: 6486–6504. DOI: 10.1039/c8cs00187a.
Google Scholar | Crossref | Medline25. Sheikh, FA, Ju, HW, Moon, BM, et al. Hybrid scaffolds based on PLGA and silk for bone tissue engineering. J Tissue Eng Regen Med 2016; 10: 209–221. DOI: 10.1002/term.1989.
Google Scholar | Crossref | Medline26. Song, J, Klymov, A, Shao, J, et al. Electrospun nanofibrous silk fibroin membranes containing gelatin nanospheres for controlled delivery of biomolecules. Adv Healthc Mater 2017; 6: 1700014. DOI: 10.1002/adhm.201700014.
Google Scholar | Crossref27. Silva, SS, Oliveira, NM, Oliveira, MB, et al. Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomater 2016; 32: 178–189. DOI: 10.1016/j.actbio.2016.01.003.
Google Scholar | Crossref | Medline28. Dadras Chomachayi, M, Solouk, A, Akbari, S, et al. Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res A 2018; 106: 1092–1103. DOI: 10.1002/jbm.a.36303.
Google Scholar | Crossref | Medline29. He, S, Shi, D, Han, Z, et al. Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed Eng Online 2019; 18: 97. DOI: 10.1186/s12938-019-0716-4.
Google Scholar | Crossref | Medline30. Zhao, X, Chen, Z, Liu, Y, et al. Silk fibroin microparticles with hollow mesoporous silica nanocarriers encapsulation for abdominal wall repair. Adv Health Mater 2018; 7: 1801005. DOI: 10.1002/adhm.201801005.
Google Scholar | Crossref31. Wang, X, Wenk, E, Hu, X, et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007; 28: 4161–4169. DOI: 10.1016/j.biomaterials.2007.05.036.
Google Scholar | Crossref | Medline32. Mahboubian, A, Hashemein, SK, Moghadam, S, et al. Preparation and in-vitro evaluation of controlled release PLGA microparticles containing triptoreline. Iran J Pharm Res 2010; 9: 369–78.
Google Scholar | Medline33. Perugini, P, Genta, I, Conti, B, et al. Long-term release of clodronate from biodegradable microspheres. AAPS Pharm Sci Tech 2001; 2: 6–14. DOI: 10.1208/pt020310.
Google Scholar | Crossref34. Yang, H, Hao, Y, Liu, Q, et al. Preparation and in vitro study of hydrochloric norvancomycin encapsulated poly (D,L-lactide-co-glycolide, PLGA) microspheres for potential use in osteomyelitis. Artif Cell Nanomed Biotechnol 2017; 45: 1326–1330. DOI: 10.1080/21691401.2016.1233110.
Google Scholar | Crossref | Medline35. Wenhao, Z, Zhang, T, Yan, J, et al. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomater 2020; 116: 223–245. DOI: 10.1016/j.actbio.2020.08.040.
Google Scholar | Crossref | Medline36. Wang, F, Ni, B, Zhu, Z, et al. Intra-discal vancomycin-loaded PLGA microsphere injection for MRSA discitis: an experimental study. Arch Orthopaedic Trauma Surg 2011; 131: 111–119. DOI: 10.1007/s00402-010-1154-8.
Google Scholar | Crossref | Medline37. Wang, S, Guo, S. Disodium norcantharidate-loaded poly(ɛ-caprolactone) microspheresII. Modification of morphology and release behavior. Int J Pharm 2008; 353: 15–20. DOI: 10.1016/j.ijpharm.2007.11.007.
Google Scholar | Crossref | Medline38. Farokhi, M, Mottaghitalab, F, Ai, J, et al. Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. Int J Pharm 2013; 454: 216–225. DOI: 10.1016/j.ijpharm.2013.06.080.
Google Scholar | Crossref | Medline39. Bayraktar, O, Malay, O, Ozgarip, Y, et al. Silk fibroin as a novel coating material for controlled release of theophylline. Eur J Pharm Biopharm 2005; 60: 373–381. DOI: 10.1016/j.ejpb.2005.02.002.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif