Long-Term Imaging Reveals a Circadian Rhythm of Intracellular Chloride in Neurons of the Suprachiasmatic Nucleus

Aguilar-Roblero, R, Mejia-Lopez, A, Cortes-Pedroza, D, Chavez-Juarez, JL, Gutierrez-Monreal, MA, Dominguez, G, Vergara, P, Segovia, J (2018) Calcium-regulated chloride channel anoctamin-1 is present in the suprachiasmatic nuclei of rats. Neuroreport 29:334-339.
Google Scholar | Crossref | Medline Aguilar-Roblero, R, Verduzco-Carbajal, L, Rodríguez, C, Mendez-Franco, J, Morán, J, Perez de la Mora, M (1993) Circadian rhythmicity in the GABAergic system in the suprachiasmatic nuclei of the rat. Neurosci Lett 157:199-202.
Google Scholar | Crossref | Medline Alamilla, J, Perez-Burgos, A, Quinto, D, Aguilar-Roblero, R (2014) Circadian modulation of the Cl(-) equilibrium potential in the rat suprachiasmatic nuclei. BioMed Res Int 2014:424982.
Google Scholar | Crossref | Medline Albus, H, Vansteensel, MJ, Michel, S, Block, GD, Meijer, JH (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886-893.
Google Scholar | Crossref | Medline | ISI Arosio, D, Ratto, GM (2014) Twenty years of fluorescence imaging of intracellular chloride. Front Cell Neurosci 8:258.
Google Scholar | Crossref | Medline Arosio, D, Ricci, F, Marchetti, L, Gualdani, R, Albertazzi, L, Beltram, F (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nature Methods 7:516-518.
Google Scholar | Crossref | Medline Barca-Mayo, OM, Pons-Espinal, MP, Follert, PA, Armirotti, AL, Berdondini, L, De Pietri Tonelli, D (2017) Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8:14336.
Google Scholar | Crossref | Medline Batti, L, Mukhtarov, M, Audero, E, Ivanov, A, Paolicelli, O, Zurborg, S, Gross, C, Bregestovski, P, Heppenstall, PA (2013) Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride. Front Mol Neurosci 6:11.
Google Scholar | Crossref | Medline Belenky, MA, Sollars, PJ, Mount, DB, Alper, SL, Yarom, Y, Pickard, GE (2010) Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus. Neuroscience 165:1519-1537.
Google Scholar | Crossref | Medline Belenky, MA, Yarom, Y, Pickard, GE (2008) Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol 506:708-732.
Google Scholar | Crossref | Medline Ben-Ari, Y, Woodin, MA, Sernagor, E, Cancedda, L, Vinay, L, Rivera, C, Legendre, P, Luhmann, HJ, Bordey, A, Wenner, P, et al (2012) Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!. Front Cell Neurosci 6:35.
Google Scholar | Crossref | Medline | ISI Berg, J, Yang, H, Jan, LY (2012) Ca2+-activated Cl- channels at a glance. J Cell Sci 125:1367-1371.
Google Scholar | Crossref | Medline | ISI Blaesse, P, Airaksinen, MS, Rivera, C, Kaila, K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820-838.
Google Scholar | Crossref | Medline | ISI Brickley, SG, Mody, I (2012) Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 73:23-34.
Google Scholar | Crossref | Medline | ISI Cao, R, Anderson, FE, Jung, YJ, Dziema, H, Obrietan, K (2011) Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 181:79-88.
Google Scholar | Crossref | Medline Castel, M, Morris, J, Belenky, M (1996) Non-synaptic and dendritic exocytosis from dense-cored vesicles in the suprachiasmatic nucleus. Neuroreport 7:543-547.
Google Scholar | Crossref | Medline Cattabeni, F, Maggi, A, Monduzzi, M, De Angelis, L, Racagni, G (1978) GABA: circadian fluctuations in rat hypothalamus. J Neurochem 31:565-567.
Google Scholar | Crossref | Medline Chiang, CK, Mehta, N, Patel, A, Zhang, P, Ning, Z, Mayne, J, Sun, WY, Cheng, HY, Figeys, D (2014) The proteomic landscape of the suprachiasmatic nucleus clock reveals large-scale coordination of key biological processes. PLoS Genet 10:e1004695.
Google Scholar | Crossref | Medline Choi, HJ, Lee, CJ, Schroeder, A, Kim, YS, Jung, SH, Kim, JS, Kim do, Y, Son, EJ, Han, HC, Hong, SK, et al (2008) Excitatory actions of GABA in the suprachiasmatic nucleus. J Neurosci 28:5450-5459.
Google Scholar | Crossref | Medline | ISI De Jeu, M, Pennartz, CMA (2002) Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase. J Neurophysiol 87:834-844.
Google Scholar | Crossref | Medline | ISI Delpire, E, Days, E, Lewis, LM, Mi, D, Kim, K, Lindsley, CW, Weaver, CD (2009) Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2. Proc Nat Acad Sci USA 106:5383-5388.
Google Scholar | Crossref | Medline | ISI DeWoskin, D, Myung, J, Belle, MD, Piggins, HD, Takumi, T, Forger, DB (2015) Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci USA 112:E3911-3919.
Google Scholar | Crossref | Medline | ISI Duran, C, Thompson, CH, Xiao, Q, Hartzell, HC (2010) Chloride channels: often enigmatic, rarely predictable. Ann Rev Physiol 72:95-121.
Google Scholar | Crossref | Medline Evans, JA, Leise, TL, Castanon-Cervantes, O, Davidson, AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80:973-983.
Google Scholar | Crossref | Medline | ISI Fan, J, Zeng, H, Olson, DP, Huber, KM, Gibson, JR, Takahashi, JS (2015) Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. J Neurosci 35:1905-1920.
Google Scholar | Crossref | Medline | ISI Farajnia, S, van Westering, TL, Meijer, JH, Michel, S (2014) Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Nat Acad Sci USA 111:9627-9632.
Google Scholar | Crossref | Medline | ISI Farrant, M, Kaila, K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59-87.
Google Scholar | Crossref | Medline | ISI Feldblum, S, Erlander, MG, Tobin, AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34:689-706.
Google Scholar | Crossref | Medline | ISI Freeman, GM, Krock, RM, Aton, SJ, Thaben, P, Herzog, ED (2013) GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78:799-806.
Google Scholar | Crossref | Medline | ISI Friedel, P, Bregestovski, P, Medina, I (2013) Improved method for efficient imaging of intracellular Cl(-) with Cl-Sensor using conventional fluorescence setup. Front Mol Neurosci 6:7.
Google Scholar | Crossref | Medline Gamba, G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85:423-493.
Google Scholar | Crossref | Medline | ISI Gao, B, Moore, RY (1996) Glutamic acid decarboxylase message isoforms in human suprachiasmatic nucleus. J Biol Rhythm 11:172-179.
Google Scholar | SAGE Journals | ISI Gillespie, CF, Huhman, KL, Babagbemi, TO, Albers, HE (1996) Bicuculline increases and muscimol reduces the phase-delaying effects of light and VIP/PHI/GRP in the suprachiasmatic region. J Biological Rhythm 11:137-144.
Google Scholar | SAGE Journals | ISI Gillespie, CF, Mintz, EM, Marvel, CL, Huhman, KL, Albers, HE (1997) GABAA and GABAB agonists and antagonists alter the phase-shifting effects of light when microinjected into the suprachiasmatic region. Brain Res 759:181-189.
Google Scholar | Crossref | Medline Green, DJ, Gillette, R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198-200.
Google Scholar | Crossref | Medline | ISI Hablitz, LM, Gunesch, AN, Cravetchi, O, Moldavan, M, Allen, CN (2020) Cannabinoid signaling recruits astrocytes to modulate presynaptic function in the suprachiasmatic nucleus. eNeuro 7(1):ENEURO.0081-19.2020.
Google Scholar | Crossref Hamada, T, Antle, MC, Silver, R (2004) Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur J Neurosci 19:1741-1748.
Google Scholar | Crossref | Medline | ISI Hamada, T, LeSauter, J, Venuti, JM, Silver, R (2001) Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 21:7742-7750.
Google Scholar | Crossref | Medline | ISI Harris, JA, Hirokawa, KE, Sorensen, SA, Gu, H, Mills, M, Ng, LL, Bohn, P, Mortrud, M, Ouellette, B, Kidney, J, et al (2014) Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circ 8:76.
Google Scholar | Crossref | Medline Huang, WC, Xiao, S, Huang, F, Harfe, BD, Jan, YN, Jan, LY (2012) Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74:179-192.
Google Scholar | Crossref | Medline Ikeda, M, Sugiyama, T, Wallace, CS, Gompf, HS, Yoshioka, T, Miyawaki, A, Allen, CN (2003) Circadian dynamics of cytosolic and nuclear Ca(2+) in single suprachiasmatic nucleus neurons. Neuron 38:253-263.
Google Scholar | Crossref | Medline | ISI Inoue, M, Hara, M, Zeng, XT, Hirose, T, Ohnishi, S, Yasukura, T, Uriu, T, Omori, K, Minato, A, Inagaki, C (1991) An ATP-driven Cl- pump regulates Cl- concentrations in rat hippocampal neurons. Neurosci Lett 134:75-78.
Google Scholar | Crossref | Medline Inouye, ST, Kawamura, H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76:5962-5966.
Google Scholar | Crossref | Medline | ISI Irwin, RP, Allen, CN (2009) GABAergic signaling induces divergent neuronal Ca(2+) responses in the suprachiasmatic nucleus network. Eur J Neurosci 30:1462-1475.
Google Scholar | Crossref | Medline Ito, C, Wakamori, M, Akaike, N (1991) Dual effect of glycine on isolated rat suprachiasmatic neurons. Am J Physiol Cell Physiol 260:C213-C218.
Google Scholar | Crossref | Medline Itri, J, Michel, S, Waschek, JA, Colwell, CS (

留言 (0)

沒有登入
gif