Retinoic Acid Deficiency Underlies the Etiology of Midfacial Defects

Abzhanov, A, Tabin, CJ. 2004. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Dev Biol. 273(1):134–148.
Google Scholar | Crossref | Medline | ISI Apesos, J, Anigian, GM. 1993. Median cleft of the lip: its significance and surgical repair. Cleft Palate Craniofac J. 30(1):94–96.
Google Scholar | SAGE Journals | ISI Beverdam, A, Brouwer, A, Reijnen, M, Korving, J, Meijlink, F. 2001. Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development. 128(20):3975–3986.
Google Scholar | Crossref | Medline Brugmann, SA, Allen, NC, James, AW, Mekonnen, Z, Madan, E, Helms, JA. 2010. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet. 19(8):1577–1592.
Google Scholar | Crossref | Medline | ISI Cammas, L, Romand, R, Fraulob, V, Mura, C, Dolle, P. 2007. Expression of the murine retinol dehydrogenase 10 (rdh10) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation. Dev Dyn. 236(10):2899–2908.
Google Scholar | Crossref | Medline Chang, BE, Blader, P, Fischer, N, Ingham, PW, Strahle, U. 1997. Axial (hnf3beta) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. EMBO J. 16(13):3955–3964.
Google Scholar | Crossref | Medline Dassule, HR, Lewis, P, Bei, M, Maas, R, McMahon, AP. 2000. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 127(22):4775–4785.
Google Scholar | Crossref | Medline | ISI El-Ruby, M, El-Din Fayez, A, El-Dessouky, SH, Aglan, MS, Mazen, I, Ismail, N, Afifi, HH, Eid, MM, Mostafa, MI, Mehrez, MI, et al. 2018. Identification of a novel homozygous Alx4 mutation in two unrelated patients with frontonasal dysplasia type-2. Am J Med Genet A. 176(5):1190–1194.
Google Scholar | Crossref | Medline Firulli, BA, Fuchs, RK, Vincentz, JW, Clouthier, DE, Firulli, AB. 2014. Hand1 phosphoregulation within the distal arch neural crest is essential for craniofacial morphogenesis. Development. 141(15):3050–3061.
Google Scholar | Crossref | Medline Friedl, RM, Raja, S, Metzler, MA, Patel, ND, Brittian, KR, Jones, SP, Sandell, LL. 2019. RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. Dis Model Mech. 12(7):dmm039073.
Google Scholar | Crossref | Medline Griffin, JN, Compagnucci, C, Hu, D, Fish, J, Klein, O, Marcucio, R, Depew, MJ. 2013. Fgf8 dosage determines midfacial integration and polarity within the nasal and optic capsules. Dev Biol. 374(1):185–197.
Google Scholar | Crossref | Medline Helms, J, Thaller, C, Eichele, G. 1994. Relationship between retinoic acid and sonic hedgehog, two polarizing signals in the chick wing bud. Development. 120(11):3267–3274.
Google Scholar | Crossref | Medline Hu, D, Marcucio, RS. 2009. A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development. 136(1):107–116.
Google Scholar | Crossref | Medline Kurosaka, H, Iulianella, A, Williams, T, Trainor, PA. 2014. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest. 124(4):1660–1671.
Google Scholar | Crossref | Medline | ISI Kurosaka, H, Mushiake, J, Mithun, S, Wu, Y, Wang, Q, Kikuchi, M, Nakaya, A, Yamamoto, S, Inubushi, T, Koga, S, et al. 2021. Synergistic role of retinoic acid signaling and Gata3 during primitive choanae formation. Hum Mol Genet [epub ahead of print 17 Jul 2021] in press. doi:10.1093/hmg/ddab205
Google Scholar | Crossref Kurosaka, H, Wang, Q, Sandell, L, Yamashiro, T, Trainor, PA. 2017. Rdh10 loss-of-function and perturbed retinoid signaling underlies the etiology of choanal atresia. Hum Mol Genet. 26(7):1268–1279.
Google Scholar | Crossref | Medline Liu, W, Selever, J, Lu, MF, Martin, JF. 2003. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development. 130(25):6375–6385.
Google Scholar | Crossref | Medline | ISI Liu, W, Sun, XX, Braut, A, Mishina, Y, Behringer, RR, Mina, M, Martin, JF. 2005. Distinct functions for Bmp signaling in lip and palate fusion in mice. Development. 132(6):1453–1461.
Google Scholar | Crossref | Medline Metzler, MA, Raja, S, Elliott, KH, Friedl, RM, Tran, NQH, Brugmann, SA, Larsen, M, Sandell, LL. 2018. Correction: RDH10-mediated retinol metabolism and RARα-mediated retinoic acid signaling are required for submandibular salivary gland initiation (doi:10.1242/dev.164822). Development. 145(17):dev170795.
Google Scholar | Crossref Metzler, MA, Sandell, LL. 2016. Enzymatic metabolism of vitamin A in developing vertebrate embryos. Nutrients. 8(12):812.
Google Scholar | Crossref Mishra, S, Sabhlok, S, Panda, PK, Khatri, I. 2015. Management of midline facial clefts. J Maxillofac Oral Surg. 14(4):883–890.
Google Scholar | Crossref | Medline Muenke, M, Beachy, PA. 2000. Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev. 10(3):262–269.
Google Scholar | Crossref | Medline | ISI Nanni, L, Ming, JE, Du, Y, Hall, RK, Aldred, M, Bankier, A, Muenke, M. 2001. SHH mutation is associated with solitary median maxillary central incisor: a study of 13 patients and review of the literature. Am J Med Genet. 102(1):1–10.
Google Scholar | Crossref | Medline Niederreither, K, Subbarayan, V, Dolle, P, Chambon, P. 1999. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 21(4):444–448.
Google Scholar | Crossref | Medline Peters, H, Neubuser, A, Kratochwil, K, Balling, R. 1998. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 12(17):2735–2747.
Google Scholar | Crossref | Medline | ISI Qu, S, Niswender, KD, Ji, Q, van der Meer, R, Keeney, D, Magnuson, MA, Wisdom, R. 1997. Polydactyly and ectopic ZPA formation in Alx-4 mutant mice. Development. 124(20):3999–4008.
Google Scholar | Crossref | Medline Rhinn, M, Dolle, P. 2012. Retinoic acid signalling during development. Development. 139(5):843–858.
Google Scholar | Crossref | Medline | ISI Rossant, J, Zirngibl, R, Cado, D, Shago, M, Giguère, V. 1991. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5(8):1333–1344.
Google Scholar | Crossref | Medline Sandell, LL, Kurosaka, H, Trainor, PA. 2012a. Whole mount nuclear fluorescent imaging: Convenient documentation of embryo morphology. Genesis. 50(11):844–850.
Google Scholar | Crossref | Medline Sandell, LL, Lynn, ML, Inman, KE, McDowell, W, Trainor, PA. 2012b. RDH10 oxidation of vitamin A is a critical control step in synthesis of retinoic acid during mouse embryogenesis. PLoS One. 7(2):e30698.
Google Scholar | Crossref | Medline Sandell, LL, Sanderson, BW, Moiseyev, G, Johnson, T, Mushegian, A, Young, K, Rey, JP, Ma, JX, Staehling-Hampton, K, Trainor, PA. 2007. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev. 21(9):1113–1124.
Google Scholar | Crossref | Medline Schneider, RA, Hu, D, Rubenstein, JL, Maden, M, Helms, JA. 2001. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development. 128(14):2755–2767.
Google Scholar | Crossref | Medline Shannon, SR, Moise, AR, Trainor, PA. 2017. New insights and changing paradigms in the regulation of vitamin a metabolism in development. Wiley Interdiscip Rev Dev Biol. 6(3). doi:10.1002/wdev.264
Google Scholar | Crossref | Medline Takahashi, M, Tamura, K, Buscher, D, Masuya, H, Yonei-Tamura, S, Matsumoto, K, Naitoh-Matsuo, M, Takeuchi, J, Ogura, K, Shiroishi, T, et al. 1998. The role of Alx-4 in the establishment of anteroposterior polarity during vertebrate limb development. Development. 125(22):4417–4425.
Google Scholar | Crossref | Medline Twigg, SR, Versnel, SL, Nürnberg, G, Lees, MM, Bhat, M, Hammond, P, Hennekam, RC, Hoogeboom, AJ, Hurst, JA, Johnson, D, et al. 2009. Frontorhiny, a distinctive presentation of frontonasal dysplasia caused by recessive mutations in the ALX3 homeobox gene. Am J Hum Genet. 84(5):698–705.
Google Scholar | Crossref | Medline | ISI Uz, E, Alanay, Y, Aktas, D, Vargel, I, Gucer, S, Tuncbilek, G, von Eggeling, F, Yilmaz, E, Deren, O, Posorski, N, et al. 2010. Disruption of ALX1 causes extreme microphthalmia and severe facial clefting: expanding the spectrum of autosomal-recessive ALX-related frontonasal dysplasia. Am J Hum Genet. 86(5):789–796.
Google Scholar | Crossref | Medline Ventura, A, Kirsch, DG, McLaughlin, ME, Tuveson, DA, Grimm, J, Lintault, L, Newman, J, Reczek, EE, Weissleder, R, Jacks, T. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature. 445(7128):661–665.
Google Scholar | Crossref | Medline | ISI Wang, Q, Kurosaka, H, Kikuchi, M, Nakaya, A, Trainor, PA, Yamashiro, T. 2019. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis Model Mech. 12(10):dmm040279.
Google Scholar | Crossref Wright, DM, Buenger, DE, Abashev, TM, Lindeman, RP, Ding, J, Sandell, LL. 2015. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands. Dev Biol. 407(1):57–67.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif