Preparation of Liposomal Raloxifene-Graphene Nanosheet and Evaluation of Its In Vitro Anticancer Effects

1. Iqbal, MA, Arora, S, Prakasam, G, Calin, GA, Syed, MA. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 2019;70:3-20.
Google Scholar | Crossref | Medline2. Hung, J-Y, Chang, W-A, Tsai, Y-M, et al. Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene-induced human non-small cell lung cancer bone metastasis. Int J Oncol. 2015;46:1985-1993.
Google Scholar | Crossref | Medline3. MacKinnon, AC, Kopatz, J, Sethi, T. The molecular and cellular biology of lung cancer: Identifying novel therapeutic strategies. Br Med Bull. 2010;95:47-61.
Google Scholar | Crossref | Medline4. Fatima, M, Iqubal, MK, Iqubal, A, et al. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer [published ahead of print July 8, 2021]. Anti Cancer Agents Med Chem. doi: 10.2174/1871520621666210708123750.
Google Scholar | Crossref5. Jin, X, Yang, Q, Zhang, Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: Implications for effective treatment of lung cancer. Int J Nanomed. 2017;12:5109-5118.
Google Scholar | Crossref | Medline6. Zhang, T, Chen, Y, Ge, Y, Hu, Y, Li, M, Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B. 2018;8:440-448.
Google Scholar | Crossref | Medline7. Taurin, S, Allen, KM, Scandlyn, MJ, Rosengren, RJ. Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression. Int J Oncol. 2013;43:785-792.
Google Scholar | Crossref | Medline8. Almutairi, FM, Abd-Rabou, AA, Mohamed, MS. Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells. Bioorg Med Chem. 2019;27:1629-1638.
Google Scholar | Crossref | Medline9. Patil, PH, Belgamwar, VS, Patil, PR, Surana, SJ. Solubility enhancement of raloxifene using inclusion complexes and cogrinding method. J Pharm (Lahore). 2013;2013:1-9.
Google Scholar10. Malard, LM, Pimenta, MA, Dresselhaus, G, Dresselhaus, MS. Raman spectroscopy in graphene. Phys Rep. 2009;473:51-87.
Google Scholar | Crossref | ISI11. Rao, CNR, Sood, AK, Subrahmanyam, KS, Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew Chem Int Ed Engl. 2009;48:7752-7777.
Google Scholar | Crossref | Medline | ISI12. Gao, Y, Zou, X, Zhao, JX, Li, Y, Su, X. Graphene oxide-based magnetic fluorescent hybrids for drug delivery and cellular imaging. Colloids Surf B Biointerfaces. 2013;112:128-133.
Google Scholar | Crossref | Medline13. Thomas, D-G, Kavak, E, Hashemi, N, Montazami, R, Hashemi, N. Synthesis of graphene nanosheets through spontaneous sodiation process. C J Carbon Res. 2018;4:42.
Google Scholar | Crossref14. Lin, J, Chen, X, Huang, P. Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev. 2016;105:242-254.
Google Scholar | Crossref | Medline15. Geim, AK . Graphene: Status and prospects. Science. 2009;324:1530-1534.
Google Scholar | Crossref | Medline | ISI16. Nakanishi, W, Minami, K, Shrestha, LK, Ji, Q, Hill, JP, Ariga, K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today. 2014;9:378-394.
Google Scholar | Crossref17. Md, S, Alhakamy, NA, Aldawsari, HM, et al. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in a549 lung cancer cells. Pharmaceuticals (Basel). 2020;13:1-21.
Google Scholar | Crossref18. Tajvar, S, Mohammadi, S, Askari, A, et al. Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects. J Liposome Res. 2019;29:163-170.
Google Scholar | Crossref | Medline19. Alhakamy, NA, A Fahmy, U, Badr-Eldin, SM, et al. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics. 2020;12:346.
Google Scholar | Crossref20. Alhakamy, NA, Ahmed, OAA, Fahmy, UA, Md, S. Development and in vitro evaluation of 2-methoxyestradiol loaded polymeric micelles for enhancing anticancer activities in prostate cancer. Polymers (Basel). 2021;13:884.
Google Scholar | Crossref | Medline21. Iqubal, MK, Iqubal, A, Imtiyaz, K, et al. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur J Pharm Biopharm. 2021;163:223-239.
Google Scholar | Crossref | Medline22. Jain, AS, Goel, PN, Shah, SM, et al. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: In vitro and in vivo evaluation. Biomed Pharmacother. 2014;68:429-438.
Google Scholar | Crossref | Medline | ISI23. Kotta, S, Khan, AW, Ansari, SH, Sharma, RK, Ali, J. Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv. 2015;22:455-466.
Google Scholar | Crossref | Medline24. Ağardan, NBM, Değim, Z, Yılmaz, Ş, Altıntaş, L, Topal, T. The effectiveness of raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech. 2016;17:968-977.
Google Scholar | Crossref | Medline25. Hu, G, Cun, X, Ruan, S, et al. Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Sci Rep. 2016;6:27669.
Google Scholar | Crossref | Medline26. Faramarzi, L, Dadashpour, M, Sadeghzadeh, H, Mahdavi, M, Zarghami, N. Enhanced anti-proliferative and pro-apoptotic effects of metformin encapsulated PLGA-PEG nanoparticles on SKOV3 human ovarian carcinoma cells. Artif Cells Nanomed Biotechnol. 2019;47:737-746.
Google Scholar | Crossref | Medline27. Alhakamy, NA, Shadab, M. Repurposing itraconazole loaded PLGA nanoparticles for improved antitumor efficacy in non-small cell lung cancers. Pharmaceutics. 2019;11:685.
Google Scholar | Crossref28. Layek, B, Mukherjee, B. Tamoxifen citrate encapsulated sustained release liposomes: Preparation and evaluation of physicochemical properties. Sci Pharm. 2010;78:507-515.
Google Scholar | Crossref | Medline29. Anwar, MM, Abd El-Karim, SS, Mahmoud, AH, Amr, AE-GE, Al-Omar, MA. A comparative study of the anticancer activity and PARP-1 inhibiting effect of benzofuran-pyrazole scaffold and its nano-sized particles in human breast cancer cells. Molecules. 2019;24:2413.
Google Scholar | Crossref30. Ghorab, MM, Alsaid, MS, Samir, N, et al. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur J Med Chem. 2017;134:304-315.
Google Scholar | Crossref | Medline31. Yassemi, A, Kashanian, S, Zhaleh, H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol. 2020;25:397-407.
Google Scholar | Crossref | Medline32. Kim, CG, Castro-Aceituno, V, Abbai, R, et al. Caspase-3/MAPK pathways as main regulators of the apoptotic effect of the phyto-mediated synthesized silver nanoparticle from dried stem of Eleutherococcus senticosus in human cancer cells. Biomed Pharmacother. 2018;99:128-133.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif