Validation of external and internal exposome of the findings associated to cerebral small vessel disease: A Mendelian randomization study

1. Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689–701.
Google Scholar | Crossref | Medline | ISI2. Wardlaw, JM, Smith, EE, Biessels, GJ, et al.; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822–838.
Google Scholar | Crossref | Medline | ISI3. Wardlaw, JM, Smith, C, Dichgans, M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684–696.
Google Scholar | Crossref | Medline4. Cannistraro, RJ, Badi, M, Eidelman, BH, et al. CNS small vessel disease: a clinical review. Neurology 2019; 92: 1146–1156.
Google Scholar | Crossref | Medline5. Das, AS, Regenhardt, RW, Vernooij, MW, et al. Asymptomatic cerebral small vessel disease: insights from population-based studies. J Stroke 2019; 21: 121–138.
Google Scholar | Crossref | Medline6. Davies, NM, Holmes, MV, Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018; 362: k601–72.
Google Scholar | Crossref | Medline7. Wild, CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 2005; 14: 1847–1850.
Google Scholar | Crossref | Medline | ISI8. Miller, GW, Jones, DP. The nature of nurture: refining the definition of the exposome. Toxicol Sci 2014; 137: 1–2.
Google Scholar | Crossref | Medline | ISI9. Vineis, P, Robinson, O, Chadeau-Hyam, M, et al. What is new in the exposome? Environ Int 2020; 143: 105887.
Google Scholar | Crossref | Medline10. DeBord, DG, Carreón, T, Lentz, TJ, et al. Use of the “exposome” in the practice of epidemiology: a primer on -Omic technologies. Am J Epidemiol 2016; 184: 302–314.
Google Scholar | Crossref | Medline11. Chung, J, Marini, S, Pera, J, et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain 2019; 142: 3176–3189.
Google Scholar | Crossref | Medline12. Persyn, E, Hanscombe, KB, Howson, JMM, et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat Commun 2020; 11: 1–12.
Google Scholar | Crossref | Medline13. Pasi, M, Van Uden, IWM, Tuladhar, AM, et al. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: Clinical consequences. Stroke 2016; 47: 1679–1684.
Google Scholar | Crossref | Medline14. Canela-Xandri, O, Rawlik, K, Tenesa, A. An atlas of genetic associations in UK biobank. Nat Genet 2018; 50: 1593–1599.
Google Scholar | Crossref | Medline15. Crawford, KM, Gallego-Fabrega, C, Kourkoulis, C, et al.; International Stroke Genetics Consortium. Cerebrovascular disease knowledge portal an open-access data resource to accelerate genomic discoveries in stroke. Stroke 2018; 49: 470–475.
Google Scholar | Crossref | Medline16. Malik, R, Chauhan, G, Traylor, M, et al.; MEGASTROKE Consortium. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 2018; 50: 524–537.
Google Scholar | Crossref | Medline17. Noyce, AJ, Bandres-Ciga, S, Kim, J, et al. The Parkinson’s disease Mendelian randomization research portal. Mov Disord 2019; 34: 1864–1872.
Google Scholar | Crossref | Medline18. Imbens, GW, Angrist, JD. Identification and estimation of local average treatment effects. Econometrica 1994; 62: 467.
Google Scholar | Crossref | ISI19. Liu, J, Rutten-Jacobs, L, Liu, M, et al. Causal impact of type 2 diabetes mellitus on cerebral small vessel disease: a Mendelian randomization analysis. Stroke 2018; 49: 1325–1331.
Google Scholar | Crossref | Medline20. Su, N, Zhai, FF, Zhou, LX, et al. Cerebral small vessel disease burden is associated with motor performance of lower and upper extremities in community-dwelling populations. Front Aging Neurosci 2017; 9: 1–7.
Google Scholar | Crossref | Medline21. Bowden, J, Spiller, W, Del Greco, FM, et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int J Epidemiol 2018; 47: 1264–1278.
Google Scholar | Crossref | Medline22. McDonnell, MN, Hillier, SL, Judd, SE, et al. Association between television viewing time and risk of incident stroke in a general population: results from the REGARDS study. Prev Med 2016; 87: 1–5.
Google Scholar | Crossref | Medline23. Gow, AJ, Bastin, ME, Muñoz Maniega, S, et al. Neuroprotective lifestyles and the aging brain. Neurology 2012; 79: 1802–1808.
Google Scholar | Crossref | Medline24. Field, TS, Doubal, FN, Johnson, W, et al. Early life characteristics and late life burden of cerebral small vessel disease in the Lothian birth cohort 1936. Aging (Albany NY) 2016; 8: 2039–2061.
Google Scholar | Crossref | Medline25. Cacioppo JT and Freberg L. Discovering psychology: the science of mind, briefer version. Belmont, CA: Cengage Learning, 2012, p. 448.
Google Scholar26. Mills, MC, Tropf, FC, Brazel, DM, et al. Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nat Hum Behav 2021; 5: 1717–1730.
Google Scholar | Crossref | Medline27. Kim, Y, Lee, H, Son, TO, et al. Reduced forced vital capacity is associated with cerebral small vessel disease burden in cognitively normal individuals. NeuroImage Clin 2020; 25: 102140.
Google Scholar | Crossref | Medline28. Seto-Yukimura, R, Ogawa, E, Hisamatsu, T, et al. Reduced lung function and cerebral small vessel disease in Japanese men: the Shiga epidemiological study of subclinical atherosclerosis (SESSA). J Atheroscler Thromb 2018; 25: 1009–1021.
Google Scholar | Crossref | Medline29. Van Dijk, EJ, Vermeer, SE, De Groot, JC, et al. Arterial oxygen saturation, COPD, and cerebral small vessel disease. J Neurol Neurosurg Psychiatry 2004; 75: 733–736.
Google Scholar | Crossref | Medline | ISI30. Guo, X, Pantoni, L, Simoni, M, et al. Midlife respiratory function related to white matter lesions and lacunar infarcts in late life: the prospective population study of women in Gothenburg, Sweden. Stroke 2006; 37: 1658–1662.
Google Scholar | Crossref | Medline31. Miyamoto, O, Auer, RN. Hypoxia, hyperoxia, ischemia, and brain necrosis. Neurology 2000; 54: 362–371.
Google Scholar | Crossref | Medline | ISI32. Ahmadi-Abhari, S, Kaptoge, S, Luben, RN, et al. Longitudinal association of C-reactive protein and lung function over 13 years. Am J Epidemiol 2014; 179: 48–56.
Google Scholar | Crossref | Medline33. Van Dijk, EJ, Prins, ND, Vermeer, SE, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam scan study. Circulation 2005; 112: 900–905.
Google Scholar | Crossref | Medline | ISI34. Pezzini, A, Grassi, M, Paciaroni, M, et al. Obesity and the risk of intracerebral hemorrhage: the multicenter study on cerebral hemorrhage in Italy. Stroke 2013; 44: 1584–1589.
Google Scholar | Crossref | Medline35. Matsukawa, H, Shinoda, M, Fujii, M, et al. Impact of body mass index on the location of spontaneous intracerebral hemorrhage. World Neurosurg 2013; 79: 478–483.
Google Scholar | Crossref | Medline36. Kroll, ME, Green, J, Beral, V, et al. Adiposity and ischemic and hemorrhagic stroke. Neurology 2016; 87: 1473–1481.
Google Scholar | Crossref | Medline37. Boulanger, M, Poon, MTC, Wild, SH, et al. Association between diabetes mellitus and the occurrence and outcome of intracerebral hemorrhage. Neurology 2016; 87: 870–878.
Google Scholar | Crossref | Medline38. Mercieca, K, Cain, J, Hansen, T, et al. Primary open angle glaucoma is associated with mr biomarkers of cerebral small vessel disease. Sci Rep 2016; 6: 1–6.
Google Scholar | Crossref | Medline39. Wang, L, Leonards, CO, Sterzer, P, et al. White matter lesions and depression: a systematic review and meta-analysis. J Psychiatr Res 2014; 56: 56–64.
Google Scholar | Crossref | Medline40. Del Brutto, OH, Mera, RM, Zambrano, M, et al. Poor sleep quality and silent markers of cerebral small vessel disease: a population-based study in community-dwelling older adults (the atahualpa project). Sleep Med 2015; 16: 428–431.
Google Scholar | Crossref | Medline41. Toyoda, K. Cerebral small vessel disease and chronic kidney disease. J Stroke 2015; 17: 31–37.
Google Scholar | Crossref | Medline42. Jackson, CA, Sudlow, CLM. Is hypertension a more frequent risk factor for deep than for lobar supratentorial intracerebral haemorrhage? J Neurol Neurosurg Psychiatry 2006; 77: 1244–1252.
Google Scholar | Crossref | Medline | ISI43. Brun, A, Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 1986; 19: 253–262.
Google Scholar | Crossref | Medline | ISI44. Wardlaw, JM, Sandercock, PAG, Dennis, MS, et al. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003; 34: 806–811.
Google Scholar | Crossref | Medline | ISI45. Rosenberg, GA. Inflammation and white matter damage in vascular cognitive impairment. Stroke 2009; 40: S20–4.
Google Scholar | Crossref | Medline | ISI46. Viswanathan, A, Greenberg, SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011; 70: 871–880.
Google Scholar | Crossref | Medline | ISI47. Larsson, SC, Burgess, S, Michaëlsson, K. Smoking and stroke: a Mendelian randomization study. Ann Neurol 2019; 86: 468–471.
Google Scholar | Crossref | Medline48. Georgakis, MK, Malik, R, Anderson, CD, et al. Genetic determinants of blood lipids and cerebral small vessel disease: role of high-density lipoprotein cholesterol. Brain 2020; 143: 597–610.
Google Scholar | Crossref | Medline49. Howrigan, D. Details and considerations of the UK Biobank GWAS. Neale lab blog. 2017, www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas (accessed 9 June 2020).

留言 (0)

沒有登入
gif