Optimization of Long-Term Human iPSC-Derived Spinal Motor Neuron Culture Using a Dendritic Polyglycerol Amine-Based Substrate

Agalliu, D., Takada, S., Agalliu, I., McMahon, A. P., Jessell, T. M. (2009). Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron, 61(5), 708–720. https://doi.org/10.1016/j.neuron.2008.12.026
Google Scholar | Crossref | Medline | ISI Amoroso, M. W., Croft, G. F., Williams, D. J., O’Keeffe, S., Carrasco, M. A., Davis, A. R., Roybon, L., Oakley, D. H., Maniatis, T., Henderson, C. E., Wichterle, H. (2013). Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J. Neurosci, 33(2), 574–586. https://doi.org/10.1523/JNEUROSCI.0906-12.2013
Google Scholar | Crossref | Medline | ISI Arbab, M., Baars, S., Geijsen, N. (2014). Modeling motor neuron disease: The matter of time. Trends in Neurosciences, 37(11), 642–652. https://doi.org/10.1016/j.tins.2014.07.008
Google Scholar | Crossref | Medline Arber, S., Han, B., Mendelsohn, M., Smith, M., Jessell, T. M., Sockanathan, S. (1999). Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron, 23(4), 659–674. https://doi.org/10.1016/S0896-6273(01)80026-X
Google Scholar | Crossref Chakkalakal, J. V., Nishimune, H., Ruas, J. L., Spiegelman, B. M., Sanes, J. R. (2010). Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development (Cambridge, England), 137(20), 3489–3499. https://doi.org/10.1242/dev.053348
Google Scholar | Crossref | Medline Chen, H., Qian, K., Du, Z., Cao, J., Petersen, A., Liu, H., Blackbourn, L. W., Huang, C. L., Errigo, A ., Yin, Y ., Lu, J., Ayala, M., Zhang, S.C. (2014). Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell. Stem Cell. 14(6), 796–809. https://doi.org/10.1016/j.stem.2014.02.004
Google Scholar | Crossref Clément, J-P., Al-Alwan, L., Glasgow, S.D., Stolow, A., Ding, Y., Melo, T.Q., Khayachi, A., Hellmund, M., Haag, R., Milnerwood, A.J., Grütter, P., Kennedy, T.E. (2022). Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture. ASN Neuro. Accepted for publication. DOI: 10.1177/17590914211073276.
Google Scholar Dasen, J. S., De Camilli, A., Wang, B., Tucker, P. W., Jessell, T. M. (2008). Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor. FoxP, 1, Cell 134(2), 304–316. https://doi.org/10.1016/j.cell.2008.06.019
Google Scholar | Crossref | Medline Dasen, J. S., Liu, J. P., Jessell, T. M. (2003). Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature, 425(6961), 926–933. https://doi.org/10.1038/nature02051
Google Scholar | Crossref | Medline Devlin, A. C., Burr, K., Borooah, S., Foster, J. D., Cleary, E. M., Geti, I., Vallier, L., Shaw, C. E., Chandran, S., Miles, G. B. (2015). Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat. Commun, 6, 5999. https://doi.org/10.1038/ncomms6999
Google Scholar | Crossref | Medline D’Orsi, B., Kilbride, S. M., Chen, G., Perez Alvarez, S., Bonner, H. P., Pfeiffer, S., Plesnila, N., Engel, T., Henshall, D. C., Dussmann, H., Prehn, J. H. (2015). Bax regulates neuronal Ca2 + homeostasis. J. Neurosci, 35(4), 1706–1722. https://doi.org/10.1523/JNEUROSCI.2453-14.2015
Google Scholar | Crossref | Medline | ISI Du, Z. W., Chen, H., Liu, H., Lu, J., Qian, K., Huang, C. L., Zhong, X., Fan, F., Zhang, S. C. (2015). Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun, 6, 6626. https://doi.org/10.1038/ncomms7626
Google Scholar | Crossref | Medline | ISI Ebert, A.D., Yu, J., Rose, F. F, Mattis, V. B., Lorson, C. L., Thomson, J. A., & Svendsen, C. N . (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–280. https://doi.org/10.1038/nature07677
Google Scholar | Crossref | Medline | ISI Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto, T., Adachi, F., Kondo, T., Okita, K., Asaka, I., Aoi, T., Watanabe, A., Yamada, Y., Morizane, A., Takahashi, J., Ayaki, T., Ito, H., Yoshikawa, K., Yamawaki, S.…& Inoue, H. (2012). Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med, 4(145), 145ra104.
Google Scholar | Crossref | Medline Frade, J. M., Barde, Y. A. (1999). Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development (Cambridge, England), 126(4), 683–690. https://doi.org/10.1242/dev.126.4.683
Google Scholar | Crossref | Medline Hellmund, M., Achazi, K., Neumann, F., Thota, B. N., Ma, N., Haag, R. (2015). Systematic adjustment of charge densities and size of polyglycerol amines reduces cytotoxic effects and enhances cellular uptake. Biomaterials Science, 3(11), 1459–1465. https://doi.org/10.1039/C5BM00187K
Google Scholar | Crossref | Medline Hellmund, M., Zhou, H., Samsonova, O., Welker, P., Kissel, T., Haag, R. (2014). Functionalized polyglycerol amine nanogels as nanocarriers for DNA. Macromol. Biosci, 14(9), 1215–1221. https://doi.org/10.1002/mabi.201400144
Google Scholar | Crossref | Medline Ho, R., Sances, S., Gowing, G., Amoroso, M. W., O’Rourke, J. G., Sahabian, A., Wichterle, H., Baloh, R. H., Sareen, D., Svendsen, C. N. (2016). ALS Disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks. Nat. Neurosci, 19(9), 1256–1267. https://doi.org/10.1038/nn.4345
Google Scholar | Crossref | Medline Huang da, W., Sherman, B. T., Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc, 4(1), 44–57. https://doi.org/10.1038/nprot.2008.211
Google Scholar | Crossref | Medline | ISI Kanning, K. C., Kaplan, A., Henderson, C. E. (2010). Motor neuron diversity in development and disease. Annu. Rev. Neurosci, 33, 409–440. https://doi.org/10.1146/annurev.neuro.051508.135722
Google Scholar | Crossref | Medline | ISI Kharkar, P. M., Kiick, K. L., Kloxin, A. M. (2013). Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev, 42(17), 7335–7372. https://doi.org/10.1039/C3CS60040H
Google Scholar | Crossref | Medline Kiskinis, E., Sandoe, J., Williams, L. A., Boulting, G. L., Moccia, R., Wainger, B. J., Han, S., Peng, T., Thams, S., Mikkilineni, S., Mellin, C., Merkle, F.T., Davis-Dusenbery, B.N., Ziller, M., Oakley, D., Ichida, J., Di Costanzo, S., Atwater, N., Maeder, M.L., …& Eggan, K. (2014). Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell. Stem Cell, 14, 781–795. https://doi.org/10.1016/j.stem.2014.03.004
Google Scholar | Crossref | Medline Kuijlaars, J., Oyelami, T., Diels, A., Rohrbacher, J., Versweyveld, S., Meneghello, G., Tuefferd, M., Verstraelen, P., Detrez, J. R., Verschuuren, M., De Vos, W.H., Meert, T., Peeters, P.J., Cik, M., Nuydens, R., Brône, B., & Verheyen, A. (2016). Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci. Rep, 6, 36529. https://doi.org/10.1038/srep36529
Google Scholar | Crossref | Medline Li, X. J., Du, Z. W., Zarnowska, E. D., Pankratz, M., Hansen, L. O., Pearce, R. A., Zhang, S. C. (2005). Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol, 23(2), 215–221. https://doi.org/10.1038/nbt1063
Google Scholar | Crossref | Medline | ISI Luisier, R., Tyzack, G.E., Hall, C.E., Mitchell, J.S., Devine, H., Taha, D.M., Malik, B., Meyer, I., Greensmith, L., Newcombe, J., Ule, J., Luscombe, N.M., & Patani, R. (2018). Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat. Commun, 9(1), 2010–2018-04373-8. https://doi.org/10.1038/s41467-018-04373-8
Google Scholar | Crossref | Medline Lun, A. T., McCarthy, D. J., Marioni, J. C. (2016). A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F, 1000R. es, 5, 2122. doi: 10.12688/f1000research.9501.2.
Google Scholar Mertens, J., Paquola, A. C. M., Ku, M., Hatch, E., Bohnke, L., Ladjevardi, S., McGrath, S., Campbell, B., Lee, H., Herdy, J. R., Gonçalves, J.T., Toda, T., Kim, Y., Winkler, J., Yao, J., Hetzer, M.W., & Gage, F. H. (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal Age-related nucleocytoplasmic defects. Cell. Stem Cell, 17(6), 705–718. https://doi.org/10.1016/j.stem.2015.09.001
Google Scholar | Crossref | Medline Methot, L., Soubannier, V., Hermann, R., Campos, E., Li, S., Stifani, S. (2018). Nuclear factor-kappaB regulates multiple steps of gliogenesis in the developing murine cerebral cortex. Glia, 66(12), 2659–2672. https://doi.org/10.1002/glia.23518
Google Scholar | Crossref | Medline Miller, J. D., Ganat, Y. M., Kishinevsky, S., Bowman, R. L., Liu, B., Tu, E. Y., Mandal, P. K., Vera, E., Shim, J. W., Kriks, S., Taldone, T., Fusaki, N., Tomishima, M. J., Krainc, D., Milner, T. A., Rossi, D. J., & Studer, L. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell. Stem Cell, 13(6), 691–705. https://doi.org/10.1016/j.stem.2013.11.006
Google Scholar | Crossref | Medline | ISI Naujock, M., Stanslowsky, N., Bufler, S., Naumann, M., Reinhardt, P., Sterneckert, J., Kefalakes, E., Kassebaum, C., Bursch, F., Lojewski, X., Storch, A., Frickenhaus, M., Boeckers, T. M., Putz, S., Demestre, M., Liebau, S., Klingenstein, M., Ludolph, A. C., Dengler, R., … & Petri, S. (2016). 4-Aminopyridine Induced activity rescues hypoexcitable motor neurons from amyotrophic lateral sclerosis patient-derived induced pluripotent stem cells. Stem Cells (Dayton, Ohio), 34(6), 1563–1575. https://doi.org/10.1002/stem.2354
Google Scholar | Crossref | Medline Nijssen, J., Comley, L. H., Hedlund, E. (2017). Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathologica, 133(6), 863–885. https://doi.org/10.1007/s00401-017-1708-8
Google Scholar | Crossref | Medline Patani, R., Lewis, P. A., Trabzuni, D., Puddifoot, C. A., Wyllie, D. J., Walker, R., Smith, C., Hardingham, G. E., Weale, M., Hardy, J., Chandran, S., Ryten, M. (2012). Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis. J. Neurochem, 122(4), 738–751. https://doi.org/10.1111/j.1471-4159.2012.07825.x
Google Scholar | Crossref | Medline | ISI Qu, Q., Li, D., Louis, K. R., Li, X., Yang, H., Sun, Q., Crandall, S. R., Tsang, S., Zhou, J., Cox, C. L., Cheng, J., Wang, F. (2014). High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of islet-1. Nat. Commun, 5, 3449. https://doi.org/10.1038/ncomms4449
Google Scholar | Crossref | Medline Sareen, D., O’Rourke, J. G., Meera, P., Muhammad, A. K., Grant, S., Simpkinson, M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., Gendron, T., Petrucelli, L., Baughn, M., Ravits, J., Harms, M. B., Rigo, F., Bennett, C. F., Otis, T. S., Svendsen, C. N., & Baloh, R. H. (2013). Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med, 5(208), 208ra149. https://doi.org/10.1126/scitranslmed.3007529
Google Scholar | Crossref | Medline | ISI Schmidt, S., Lilienkampf, A., Bradley, M. (2018). New substrates for stem cell control. Philos. Trans. R. Soc. Lond. B. Biol. Sci, 373(1750)(1750), 10. https://doi.org/10.1098/rstb.2017.0223
Google Scholar Stegle, O., Teichmann, S. A., Marioni, J. C. (2015). Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet, 16(3), 133–145. https://doi.org/10.1038/nrg3833
Google Scholar | Crossref | Medline Taga, A., Dastgheyb, R., Habela, C., Joseph, J., Richard, J. P., Gross, S. K., Lauria, G., Lee, G., Haughey, N., Maragakis, N. J. (2019). Role of human-induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system. Stem Cells Transl. Med, 8(12), 1272–1285. https://doi.org/10.1002/sctm.19-0147
Google Scholar | Crossref | Medline Thaler, J., Harrison, K., Sharma, K., Lettieri, K., Kehrl, J., Pfaff, S. L. (1999). Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron, 23(4), 675–687. doi: 10.1016/s0896-6273(01)80027-1.
Google Scholar | Crossref | Medline Thaler, J. P., Lee, S. K., Jurata, L. W., Gill, G. N., Pfaff, S. L. (2002). LIM Factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell, 110(2), 237–249. https://doi.org/10.1016/S0092-8674(02)00823-1
Google Scholar | Crossref | Medline Thiry, L., Hamel, R., Pluchino, S., Durcan, T., Stifani, S. (2020). Characterization of human iPSC-derived spinal motor neurons by single-cell RNA sequencing. Neuroscience, 450, 57–70. https://doi.org/10.1016/j.neuroscience.2020.04.041
Google Scholar | Crossref | Medline Tsang, Y. M., Chiong, F., Kuznetsov, D., Kasarskis, E., Geula, C. (2000). Motor neurons are rich in non-phosphorylated neurofilaments: Cross-species comparison and alterations in ALS. Brain Research, 861(1), 45–58. https://doi.org/10.1016/S0006-8993(00)01954-5

留言 (0)

沒有登入
gif