Energetic costs of ectoparasite infection in Atlantic salmon

Parasites are widespread in nature, where they affect the energy budget of hosts, and depending on the imposed pathogenic severity, this may reduce host fitness. However, the energetic costs of parasite infections are rarely quantified. In this study, we measured metabolic rates in recently seawater adapted Atlantic salmon (Salmo salar) infected with the ectoparasitic copepod Lepeophtheirus salmonis and used an aerobic scope framework to assess the potential ecological impact of this parasite–host interaction. The early chalimus stages of L. salmonis did not affect either standard or maximum metabolic rates. However, the later mobile pre-adult stages caused an increase in both standard and maximum metabolic rate yielding a preserved aerobic scope. Notably, standard metabolic rates were elevated by 26%, presumably caused by increased osmoregulatory burdens and costs of mobilizing immune responses. The positive impact on maximum metabolic rates was unexpected and suggests that fish are able to transiently overcompensate energy production to endure the burden of parasites and thus allow for continuation of normal activities. However, infected fish are known to suffer reduced growth, and this suggests that a trade-off exists in acquisition and assimilation of resources despite an uncompromised aerobic scope. As such, when assessing impacts of environmental or biotic factors, we suggest that elevated routine costs may be a stronger predictor of reduced fitness than the available aerobic scope. Furthermore, studying the effects on parasitized fish in an ecophysiological context deserves more attention, especially considering interacting effects of other stressors in the Anthropocene.

留言 (0)

沒有登入
gif