Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation

Wang Y.a· Zhao S.b· Li G.c· Wang D.d· Jin Y.b

Author affiliations

aDepartment of Operating Room, The Second Hospital of Shandong University, Shandong University, Jinan, China
bDepartment of Anesthesiology, The Second Hospital of Shandong University, Shandong University, Jinan, China
cDepartment of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
dDepartment of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent/Cloud Rent for 48h to view Buy Cloud Access for unlimited viewing via different devices Synchronizing in the ReadCube Cloud Printing and saving restrictions apply Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview

Abstract of Research Article

Received: July 28, 2021
Accepted: November 08, 2021
Published online: January 13, 2022

Number of Print Pages: 11
Number of Figures: 7
Number of Tables: 0

ISSN: 1021-7401 (Print)
eISSN: 1423-0216 (Online)

For additional information: https://www.karger.com/NIM

Abstract

Introduction: This article purposed to detect the function of the HOTAIR and HOTAIR/microRNA-129-5p (miR-129-5p) axis on the isoflurane (ISO)-injured cells and rat, and propounded a novel perspective in exploring the molecular pathogenesis of ISO damage. Methods: The expression of HOTAIR and miR-129-5p was tested by quantitative real-time PCR. The viable cells were identified using MMT, and the apoptotic cells were provided by flow cytometry. The concentration of proinflammatory indicators was revealed by enzyme-linked immunosorbent assay kits. The function of HOTAIR on oxidative stress was detected by commercial kits. A luciferase assay was performed to confirm the relationship between miR-129-5p and HOTAIR. The Morris water maze test was conducted to elucidate the cognition of SD rats. Results: The expression of HOTAIR was enhanced and the expression of miR-129-5p was lessened in the ISO-evoked SD rats and HT22 cells. The interference of HOTAIR reversed the injury of ISO on cell viability, apoptosis, inflammation, and oxidative stress. Besides, HOTAIR might be a target ceRNA of miR-129-5p. MiR-129-5p abrogated the function of silenced HOTAIR on cell viability, cell apoptosis, inflammation, and oxidative stress. Moreover, in vivo, the intervention of HOTAIR reversed the influence of ISO on cognition and oxidative stress by binding miR-129-5p. Discussion/Conclusion: Lowly expressed HOTAIR contributed to the recovery of the ISO-injured HT22 cell model from the abnormal viability, apoptosis, inflammation, and oxidative stress by regulating miR-129-5p. miR-129-5p mediated the function of HOTAIR on cognition and oxidative balance in the ISO-managed SD rat model.

© 2022 S. Karger AG, Basel

References Wang J, Cheng CS, Lu Y, Sun S, Huang S. Volatile anesthetics regulate anti-cancer relevant signaling. Front Oncol. 2021;11:610514. Yang M, Lian N, Yu Y, Wang Y, Xie K, Yu Y. Coenzyme Q10 alleviates sevoflurane-induced neuroinflammation by regulating the levels of apolipoprotein E and phosphorylated tau protein in mouse hippocampal neurons. Mol Med Rep. 2020;22(1):445–53. Kang E, Berg DA, Furmanski O, Jackson WM, Ryu YK, Gray CD, et al. Neurogenesis and developmental anesthetic neurotoxicity. Neurotoxicol Teratol. 2017;60:33–9. Wehrle E, Tourolle Ne Betts DC, Kuhn GA, Scheuren AC, Hofmann S, Müller R. Evaluation of longitudinal time-lapsed in vivo micro-CT for monitoring fracture healing in mouse femur defect models. Sci Rep. 2019;9(1):17445. Shao D, Wu Z, Bai S, Fu G, Zou Z. The function of miRNA-153 against isoflurane-induced neurotoxicity via Nrf2/ARE cytoprotection. Mol Med Rep. 2019;19(5):4001–10. Niu D, Wang L, Cui J, Zhou B, Yao L. Inhibition of long noncoding RNA BLACAT1 protects anesthesia-induced neural cytotoxicity in human induced pluripotent stem cells derived neurons. Eur J Pharmacol. 2019;865:172737. Zhang L, Yan J, Liu Q, Xie Z, Jiang H. LncRNA Rik-203 contributes to anesthesia neurotoxicity via microRNA-101a-3p and GSK-3β-mediated neural differentiation. Sci Rep. 2019;9(1):6822. Rajagopal T, Talluri S, Akshaya RL, Dunna NR. HOTAIR LncRNA: a novel oncogenic propellant in human cancer. Clin Chim Acta. 2020;503:1–18. Mao T, He C, Wu H, Yang B, Li X. Silencing lncRNA HOTAIR declines synovial inflammation and synoviocyte proliferation and promotes synoviocyte apoptosis in osteoarthritis rats by inhibiting Wnt/β-catenin signaling pathway. Cell Cycle. 2019;18(22):3189–205. Kundović SA, Rašić D, Popović L, Peraica M, Črnjar K. Oxidative stress under general intravenous and inhalation anaesthesia. Arh Hig Rada Toksikol. 2020;71(3):169–77. Peng J, Drobish JK, Liang G, Wu Z, Liu C, Joseph DJ, et al. Anesthetic preconditioning inhibits isoflurane-mediated apoptosis in the developing rat brain. Anesth Analg. 2014;119(4):939–46. Zhang S, Hu X, Guan W, Luan L, Li B, Tang Q, et al. Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats. PLoS One. 2017;12(4):e0175654. Marchesini V, Disma N. Anaesthetic neuroprotection in children: does it exist or is it all just bad? Curr Opin Anaesthesiol. 2019;32(3):363–9. Aksenov DP, Dmitriev AV, Miller MJ, Wyrwicz AM, Linsenmeier RA. Brain tissue oxygen regulation in awake and anesthetized neonates. Neuropharmacology. 2018;135:368–75. Sellbrant I, Brattwall M, Jildenstål P, Warren-Stomberg M, Forsberg S, Jakobsson JG. Anaesthetics and analgesics; neurocognitive effects, organ protection and cancer reoccurrence an update. Int J Surg. 2016;34:41–6. Chen JS, Yu WH, Tsai MC, Hung PL, Tu YF. Comorbidities associated with genetic abnormalities in children with intellectual disability. Sci Rep. 2021;11(1):6563. Guo X, Cheng M, Ke W, Wang Y, Ji X. MicroRNA-214 suppresses propofol-induced neuroapoptosis through activation of phosphoinositide 3-kinase/protein kinase B signaling by targeting phosphatase and tensin homolog expression. Int J Mol Med. 2018;42(5):2527–37. Yang F, Zhao H, Zhang K, Wu X, Liu H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res Bull. 2020;164:37–44. Majumder S, Hadden MJ, Thieme K, Batchu SN, Niveditha D, Chowdhury S, et al. Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease. Diabetologia. 2019;62(11):2129–42. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. Obaid M, Udden SMN, Alluri P, Mandal SS. LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation. Sci Rep. 2021;11(1):232. Ni SY, Xu WT, Liao GY, Wang YL, Li J. LncRNA HOTAIR promotes LPS-induced inflammation and apoptosis of cardiomyocytes via Lin28-mediated PDCD4 stability. Inflammation. 2021;44(4):1452–63. Shi Y, Wang W. Application of different anesthetic methods in coronary artery bypass grafting and the effect on postoperative outcome. Exp Ther Med. 2019;17(1):695–700. Zhou H, Min W, Zhu Z. Comprehensive study of different expressed genes and their functional modules in anesthesia for off-pump coronary artery bypass grafting. Biomed Res Int. 2020;2020:8062902. Wu DM, Zhang YT, Lu J, Zheng YL. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol. 2018;233(9):6632–43. Gao Q, Chang N, Liu D. In vitro and in vivo assessment of the protective effect of sufentanil in acute lung injury. J Int Med Res. 2021;49(2):300060520986351. Meng Q, Wu W, Pei T, Xue J, Xiao P, Sun L, et al. miRNA-129/FBW7/NF-κB, a novel regulatory pathway in inflammatory bowel disease. Mol Ther Nucleic Acids. 2020;19:731–40. Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci. 2020;21(12):4370. Ye H, Xu G, Zhang D, Wang R. The protective effects of the miR-129-5p/keap-1/Nrf2 axis on Ang II-induced cardiomyocyte hypertrophy. Ann Transl Med. 2021;9(2):154. Spreafico M, Grillo B, Rusconi F, Battaglioli E, Venturin M. Multiple layers of CDK5R1 regulation in Alzheimer’s disease implicate long non-coding RNAs. Int J Mol Sci. 2018;19(7):2022. Li Z, Chen Q, Liu J, Du Y. Physical exercise ameliorates the cognitive function and attenuates the neuroinflammation of Alzheimer’s disease via miR-129-5p. Dement Geriatr Cogn Disord. 2020;49(2):163–9. Article / Publication Details

First-Page Preview

Abstract of Research Article

Received: July 28, 2021
Accepted: November 08, 2021
Published online: January 13, 2022

Number of Print Pages: 11
Number of Figures: 7
Number of Tables: 0

ISSN: 1021-7401 (Print)
eISSN: 1423-0216 (Online)

For additional information: https://www.karger.com/NIM

Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif