Hyperthermic Intraperitoneal Chemotherapy in the Treatment Armamentarium of Epithelial Ovarian Cancer: Time to End the Dichotomy

Bhatt A.a· Glehen O.b

Author affiliations

aDepartment of Surgical Oncology, Zydus Hospital, Ahmedabad, India
bDepartment of Surgical Oncology, Centre Hospitalier Lyon-Sud, Lyon, France

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent/Cloud Rent for 48h to view Buy Cloud Access for unlimited viewing via different devices Synchronizing in the ReadCube Cloud Printing and saving restrictions apply Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview

Abstract of Review Article

Received: August 22, 2021
Accepted: November 29, 2021
Published online: January 10, 2022

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 5

ISSN: 2297-4725 (Print)
eISSN: 2297-475X (Online)

For additional information: https://www.karger.com/VIS

Abstract

Background: Advanced epithelial ovarian cancer (EOC) is an incurable disease with over 75% of the patients developing recurrence in the peritoneum. Hyperthermic intraperitoneal chemotherapy (HIPEC) is a promising treatment option for both first-line therapy and treatment of recurrence. In this article, we review the rationale and current evidence for performing HIPEC and the role of HIPEC in the light of targeted systemic therapies. Summary: There are few randomized trials and several retrospective studies on the role of HIPEC in the management of EOC. A 12-month-overall survival (OS) benefit of the addition of HIPEC to interval cytoreductive surgery (CRS) was demonstrated in 1 randomized trial following which HIPEC has been included as a treatment option for this indication in several national/international guidelines. One retrospective propensity score-matched analysis showed a 16-month OS benefit of adding HIPEC to primary CRS. One randomized trial showed no benefit of the addition of carboplatin HIPEC to secondary CRS over secondary CRS alone. For patients undergoing primary CRS and secondary CRS for recurrence, the results of ongoing randomized trials are needed to define the role of HIPEC in these situations. All clinical trials have shown that the morbidity of HIPEC performed after CRS is acceptable. Along with the emergence of HIPEC as a promising surgical therapy, targeted therapies like bevacizumab and poly adenosine diphosphate-ribose polymerase inhibitors have been developed that have shown a survival benefit in selected patients. In principle, HIPEC and targeted therapies work in different ways and it is plausible to assume that their benefit could be additive, and their combination should be evaluated in clinical trials. The impact of prognostic factors like the disease extent, pathological response to systemic chemotherapy (SC), the histological subtype and molecular profile on the benefit of HIPEC, and targeted therapies has not been evaluated in clinical trials. Key Messages: HIPEC is an important therapeutic strategy in the treatment of EOC. While its role in patients undergoing interval CRS has been established, the results of ongoing randomized trials are needed to define its benefit at other time points. The morbidity of HIPEC in addition to CRS is acceptable. More research is needed to define subgroups that benefit most from HIPEC based on the extent of disease, response to SC, histology, and molecular profile. The combination of HIPEC and maintenance therapies should be evaluated in well-designed randomized clinical trials that evaluate not just the survival benefit and morbidity but also the cost-effectiveness of each therapy.

© 2022 S. Karger AG, Basel

References Colombo N, Lorusso D, Scollo P. Impact of recurrence of ovarian cancer on quality of life and outlook for the future. Int J Gynecol Cancer. 2017 Jul;27(6):1134–40. Bhatt A, Glehen O. The role of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in ovarian cancer: a review. Indian J Surg Oncol. 2016 Jun;7(2):188–97. Spiliotis J, Halkia E, Lianos E, Kalantzi N, Grivas A, Efstathiou E, et al. Cytoreductive surgery and HIPEC in recurrent epithelial ovarian cancer: a prospective randomized phase III study. Ann Surg Oncol. 2015 May;22(5):1570–5. van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–40. Zivanovic O, Chi DS, Zhou Q, Iasonos A, Konner JA, Makker V, et al. Secondary cytoreduction and carboplatin hyperthermic intraperitoneal chemotherapy for platinum-sensitive recurrent ovarian cancer: an MSK Team Ovary Phase II Study. J Clin Oncol. 2021 Aug 10;39(23):2594–604. Tewari KS, Burger RA, Enserro D, Norquist BM, Swisher EM, Brady MF, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019 Sep 10;37(26):2317–28. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505. Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019 Dec 19;381(25):2416–28. Mirza MR, Pignata S, Ledermann JA. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol. 2018 Jun 1;29(6):1366–76. Vergote I, Trope CG, Amant F, Kristensen GB, Ehlen T, Johnson N, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010;363:943–53. Kehoe S, Hook J, Nankivell M, Jayson GC, Kitchener H, Lopes T, et al. Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. Lancet. 2015;386:249–57. Fagotti A, Ferrandina MG, Vizzielli G, Pasciuto T, Fanfani F, Gallotta V, et al. Randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer (SCORPION-NCT01461850). Int J Gynecol Cancer. 2020;30:1657–64. Chi DS, Musa F, Dao F, Zivanovic O, Sonoda Y, Leitao MM, et al. An analysis of patients with bulky advanced stage ovarian, tubal, and peritoneal carcinoma treated with primary debulking surgery (PDS) during an identical time period as the randomized EORTC-NCIC trial of PDS vs neoadjuvant chemotherapy (NACT). Gynecol Oncol. 2012 Jan;124(1):10–4. Rauh-Hain JA, Rodriguez N, Growdon WB, Goodman AK, Boruta DM 2nd, Horowitz NS, et al. Primary debulking surgery versus neoadjuvant chemotherapy in stage IV ovarian cancer. Ann Surg Oncol. 2012 Mar;19(3):959–65. Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288(3):F433–42. Flessner MF. Intraperitoneal drug therapy: physical and biological principles. Cancer Treat Res. 2007;134:131–52. Yonemura Y. Trans-lymphatic metastasis. In: Yonemura Y, editor. Atlas and principles of peritonectomy for peritoneal surface malignancy. Kyoto: NPO to Support Peritoneal Surface Malignancy; 2012. p. 188–206. ISBN: 978-4-9906097-0-2. Yonemura Y, Canbay E, Endou Y, Ishibashi H, Mizumoto A, Miura M, et al. Mechanisms of the formation of peritoneal surface malignancy on omental milky spots from low grade appendiceal mucinous carcinoma. J Clin Exp Oncol. 2014;3:3. Solass W, Herbette A, Schwarz T, Hetzel A, Sun JS, Dutreix M, et al. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination capnoperitoneum: proof of concept. Surg Endosc. 2012;26(3):847–52. Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Förster E, Zieren J, Giger-Pabst U. Exploring the spatial drug distribution pattern of pressurized Intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2016;23(4):1220–4. Yonemura Y, Sako S, Wakama S, Ishibashi H, Mizumoto A, Takao N, et al. History of peritoneal surface malignancy treatment in Japan. Indian J Surg Oncol. 2019 Feb;10(Suppl 1):3–11. Sticca RP, Dach BW. Rationale for hyperthermia with intraoperative intraperitoneal chemotherapy agents. Surg Oncol Clin N Am. 2003;12:689–701. Sugarbaker PH. Laboratory and clinical basis for hyperthermia as a component of intracavitary chemotherapy. Int J Hyperthermia. 2007;23:431–42. Glehen O, Mohamed F, Gilly FN. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 2004 Apr;5(4):219–28. de Bree E, Michelakis D, Stamatiou D, Romanos J, Zoras O. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum. 2017;2(2):47–62. Bhatt A, de Hingh I, Van Der Speeten K, Hubner M, Deraco M, Bakrin N, et al. HIPEC methodology and regimens: the need for an expert consensus. Ann Surg Oncol. 2021;28(13):9098–113. Gouy S, Ferron G, Glehen O, Bayar A, Marchal F, Pomel C, et al. Results of a multicenter phase I dose-finding trial of hyperthermic intraperitoneal cisplatin after neoadjuvant chemotherapy and complete cytoreductive surgery and followed by maintenance bevacizumab in initially unresectable ovarian cancer. Gynecol Oncol. 2016;142(2):237–42. Zivanovic O, Abramian A, Kullmann M, Fuhrmann C, Coch C, Hoeller T, et al. HIPEC ROC I: a phase 1 study of cisplatin administered as hyperthermic intraoperative intraperitoneal chemoperfusion followed by postoperative intravenous platinum-based chemotherapy in patients with platinum-sensitive recurrent epithelial ovarian cancer. Int J Cancer. 2015;136:699–708. De Bree E, Rosing H, Michalakis J, Romanos J, Relakis K, Theodoropoulos PA, et al. Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol. 2006;32:666–70. Ansaloni L, Coccolini F, Morosi L, Ballerini A, Ceresoli M, Grosso G, et al. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer. 2015;112:306–12. Steller MA, Egorin MJ, Trimble EL, Bartlett DL, Zuhowski EG, Alexander HR, et al. A pilot phase I trial of continuous hyperthermic peritoneal perfusion with high-dose carboplatin as primary treatment of patients with small-volume residual ovarian cancer. Cancer Chemother Pharmacol. 1999;43(2):106–14. Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. Pharmacokinetic study of perioperative intravenous Ifosfamide. Int J Surg Oncol. 2011;2011:185092. Deraco M, Kusamura S, Virzì S, Puccio F, Macrì A, Famulari C, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: multi-institutional phase-II trial. Gynecol Oncol. 2011 Aug;122(2):215–20. Pomel C, Ferron G, Lorimier G, Rey A, Lhomme C, Classe JM, et al. Hyperthermic intra-peritoneal chemotherapy using oxaliplatin as consolidation therapy for advanced epithelial ovarian carcinoma. Results of a phase II prospective multicentre trial. CHIPOVAC study. Eur J Surg Oncol. 2010 Jun;36(6):589–93. Sugarbaker PH, Stuart OA, Bijelic L. Intraperitoneal gemcitabine chemotherapy treatment for patients with resected pancreatic cancer: rationale and report of early data. Int J Surg Oncol. 2011;2011:161862. Bijelic L, Sugarbaker PH, Stuart OA. Hyperthermic intraperitoneal chemotherapy with melphalan: a summary of clinical and pharmacological data in 34 patients. Gastroenterol Res Pract. 2012;2012:827534. Sugarbaker PH, Van der Speeten K. Surgical technology and pharmacology of hyperthermic perioperative chemotherapy. J Gastrointest Oncol. 2016 Feb;7(1):29–44. Lepock JR. How do cells respond to their thermal environment? Int J Hyperthermia. 2005;21:681–7. De Bree E, Tsiftsis DD. Experimental and pharmacokinetic studies in intraperitoneal chemotherapy: from laboratory bench to bedside. Recent Results Cancer Res. 2007;169:53–73. Los G, Verdegaal EM, Mutsaers PH, McVie JG. Penetration of carboplatin and cisplatin into rat peritoneal tumor nodules after intraperitoneal chemotherapy. Cancer Chemother Pharmacol. 1991;28:159–65. Van De Vaart PJ, Van Der Vange N, Zoetmulder FA, Van Goethem AR, Van Tellingen O, Ten Bokkel Huinink WW, et al. Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: pharmacokinetics and cisplatin-DNA adduct formation in patients and ovarian cancer cell lines. Eur J Cancer. 1998;34:148–54. Hettinga JVE. Reduction of cisplatin resistance by hyperthermia. University of Groningen, 1996. Hetting VE, Lemstra W, Meijer C, Dam WA, Uges DR, Konings AW, et al. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin sensitive and -resistant tumour cells. Br J Cancer. 1997;75:1735–43. Mikkelsen MS, Blaakaer J, Petersen LK, Schleiss LG, Iversen LH. Pharmacokinetics and toxicity of carboplatin used for hyperthermic intraperitoneal chemotherapy (HIPEC) in treatment of epithelial ovarian cancer. Pleura Peritoneum. 2020;5(4):20200137. Los G, Van Vugt MJ, Den Engelse L, Pinedo HM. Effects of temperature on the interaction of cisplatin and carboplatin with cellular DNA. Biochem Pharmacol. 1993;46:1229–37. Salvatorelli E, De Tursi M, Menna P, Carella C, Massari R, Colasante A, et al. Pharmacokinetics of pegylated liposomal doxorubicin administered by intraoperative hyperthermic intra- peritoneal chemotherapy to patients with advanced ovarian cancer and peritoneal carcinomatosis. Drug Metab Dispos. 2012;40:2365–73. Harrison LE, Bryan M, Pliner L, Saunders T. Phase I trial of pegylated liposomal doxorubicin with hyperthermic intraperitoneal chemotherapy in patients undergoing cytoreduction for advanced intra-abdominal malignancy. Ann Surg Oncol. 2008;15:1407–13. Ning S, Macleod K, Abra RM, Huang AH, Hahn GM. Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys. 1994;29:827–34. De Bree E, Theodoropoulos PA, Rosing H, Michalakis J, Romanos J, Beijnen JH, et al. Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat Rev. 2006;32:471–82. De Bree E, Rosing H, Filis D, Romanos J, Melissourgaki M, Daskalakis M, et al. Cytoreductive surgery and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel:a clinical and pharmacokinetic study. Ann Surg Oncol. 2008;15:1183–92. De Bree E, Katsougkri D, Polioudaki H, Angaridou ETS, Michelakis D, Zoras O, et al. Hyperthermia during intraperitoneal chemotherapy with paclitaxel or docetaxel for ovarian cancer: is there any benefit? Anticancer Res. Dec 2020;40(12):6769–80. Rietbroek RC, Katschinski DM, Reijers MH, Robins HI, Geerdink A, Tutsch K, et al. Lack of thermal enhancement for taxanes in vitro. Int J Hyperthermia. 1997 Sep–Oct;13(5):525–33. Chiva LM, Gonzalez-Martin A. A critical appraisal of hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of advanced and recurrent ovarian cancer. Gynecol Oncol. 2015;136:130–5. Huo YR, Richards A, Liauw W, Morris DL. Hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery (CRS) in ovarian cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2015 Dec;41(12):1578–89. Zhang G, Zhu Y, Liu C, Chao G, Cui R, Zhang Z. The prognosis impact of hyperthermic intraperitoneal chemotherapy (HIPEC) plus cytoreductive surgery (CRS) in advanced ovarian cancer: the meta-analysis. J Ovarian Res. 2019 Apr 17;12(1):33. Lei Z, Wang Y, Wang J, Wang K, Tian J, Zhao Y, et al. Evaluation of cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for stage III epithelial ovarian cancer. JAMA Netw Open. 2020;3(8):e2013940. Lim MC, Chang S-J, Yoo HJ, Nam BH, Bristow R, Park SY, et al. Randomized trial of hyperthermic intraperitoneal chemotherapy (HIPEC) in women with primary advanced peritoneal, ovarian, and tubal cancer. J Clin Oncol. 2017;35:5520. Spriggs DR, Zivanovic O. Ovarian cancer treatment: are we getting warmer? N Engl J Med. 2018 Jan 18;378(3):293–4. Vergote I, Chiva L, du Bois A. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018 Apr 5;378(14):1362–3. National Comprehensive Cancer Network®. NCCN guidelines. Available from: https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf Accessed 2021 Aug 12. Bakrin N, Gladieff L. [Malignant epithelial ovarian cancer: Role of intra-peritoneal chemotherapy and hyperthermic intra peritoneal chemotherapy(HIPEC): Article drafted from the French Guidelines in oncology entitled “Initial management of patients with epithelial ovarian cancerˮ developed by FRANCOGYN, CNGOF, SFOG, GINECO-ARCAGY under the aegis of CNGOF and endorsed by INCa]. Gynecol Obstet Fertil Senol. 2019 Feb;47(2):214–21. Coleman RL, Spirtos NM, Enserro D, Herzog TJ, Sabbatini P, Armstrong DK, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med. 2019 Nov 14;381(20):1929–39. Du Bois A, Sehouli J, Vergote I, Ferron G, Reuss A, Meier W, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer. Final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol. 2020;38(15 Suppl):6000. Shi T, Zhu J, Feng Y, Tu D, Zhang Y, Zhang P, et al. Secondary cytoreduction followed by chemotherapy versus chemotherapy alone in platinum-sensitive relapsed ovarian cancer (SOC-1): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021 Apr;22(4):439–49. Munoz-Casares FC, Rufian S, Rubio MJ, Díaz CJ, Díaz R, Casado A, et al. The role of hyper-thermic intraoperative intraperitoneal chemotherapy (HIPEC) in the treatment of peritoneal carcinomatosis in recurrent ovarian cancer. Clin Transl Oncol. 2009;11:753–9. Spiliotis J, Vaxevanidou A, Sergouniotis F, Lambropoulou E, Datsis A, Christopoulou A. The role of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of recurrent advanced ovarian cancer: a prospective study. J BUON. 2011;16:74–9. Fagotti A, Costantini B, Petrillo M, Vizzielli G, Fanfani F, Margariti PA, et al. Cytoreductive surgery plus HIPEC in platinum-sensitive recurrent ovarian cancer patients: a case-control study on survival in patients with two-year follow-up. Gynecol Oncol. 2012;127:502–5. Cascales-Campos PA, Gil J, Feliciangeli E, Gil E, González-Gil A, López V, et al. The role of hyperthermic intraperitoneal chemotherapy using paclitaxel in platinum-sensitive recurrent epithelial ovarian cancer patients with microscopic residual disease after cytoreduction. Ann Surg Oncol. 2015;22(3):987–93. Le Brun JF, Campion L, Berton-Rigaud D, Lorimier G, Marchal F, Ferron G, et al. Survival benefit of hyperthermic intraperitoneal chemotherapy for recurrent ovarian cancer: a multi-institutional case control study. Ann Surg Oncol. 2014;21(11):3621–7. Baiocchi G, Ferreira FO, Mantoan H, da Costa AA, Faloppa CC, Kumagai LY, et al. Hyperthermic intraperitoneal chemotherapy after secondary cytoreduction in epithelial ovarian cancer: a single-center comparative analysis. Ann Surg Oncol. 2016;23(4):1294–301. Bamias A, Bamia C, Zagouri F, Kostouros E, Kakoyianni K, Rodolakis A, et al. Improved survival trends in platinum-resistant patients with advanced ovarian, fallopian or peritoneal cancer treated with first-line paclitaxel/platinum chemotherapy: the impact of novel agents. Oncology. 2013;84(3):158–65. Wilson MK, Pujade-Lauraine E, Aoki D, Mirza MR, Lorusso D, Oza AM, et al. Fifth ovarian cancer consensus conference of the gynecologic cancer interGroup: recurrent disease. Ann Oncol. 2017 Apr 1;28(4):727–32. Moran BJ, Tzivanakis A. The concept of “Obstruction-Free Survivalˮ as an outcome measure in advanced colorectal cancer management. Pleura Peritoneum. 2018 Feb 28;3(1):20180101. Sinukumar S, Damodaran D, Ray M, Mehta S, Paul L, Bhatt A. Pattern of recurrence after interval cytoreductive surgery and HIPEC following neoadjuvant chemotherapy in primary advanced stage IIIC/IVA epithelial ovarian cancer. Eur J Surg Oncol. 2021 Jun;47(6):1427–33. Böhm S, Faruqi A, Said I, Lockley M, Brockbank E, Jeyarajah A, et al. Chemotherapy response score: development and validation of a system to quantify histopathologic response to neoadjuvant chemotherapy in tubo-ovarian high-grade serous carcinoma. J Clin Oncol. 2015 Aug 1;33(22):2457–63. Paoletti X, Lewsley LA, Daniele G, Cook A, Yanaihara N, Tinker A, et al. Assessment of progression-free survival as a surrogate end point of overall survival in first-line treatment of ovarian cancer: a systematic review and meta-analysis. JAMA Netw Open. 2020 Jan 3;3(1):e1918939. DiSilvestro P, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Efficacy of maintenance olaparib for patients with newly diagnosed advanced ovarian cancer with a BRCA mutation: subgroup analysis findings from the SOLO1 trial. J Clin Oncol. 2020 Oct 20;38(30):3528–37. Jónsdóttir B, Lomnytska M, Poromaa IS, Silins I, Stålberg K. The peritoneal cancer index is a strong predictor of incomplete cytoreductive surgery in ovarian cancer. Ann Surg Oncol. 2021;28:244–51. Llueca A, Climent MT, Escrig J, Carrasco P, Serra A; MUAPOS Working Group (Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery). Validation of three predictive models for suboptimal cytoreductive surgery in advanced ovarian cancer. Sci Rep. 2021;11:8111. Marchetti C, Muzii L, Romito A, Benedetti Panici P. First-line treatment of women with advanced ovarian cancer: focus on bevacizumab. Onco Targets Ther. 2019 Feb 8;12:1095–103. Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381:2416–28. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96. Tewari KS, Burger RA, Enserro D, Norquist BM, Swisher EM, Brady MF, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019;37:2317–28. Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res. 2003;9:5721–8. Koole SN, van Lieshout C, van Driel WJ, van Schagen E, Sikorska K, Kieffer JM, et al. Cost effectiveness of interval cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in stage III ovarian cancer on the basis of a randomized phase III trial. J Clin Oncol. 2019 Aug 10;37(23):2041–50. Penn CA, Wong MS, Walsh CS. Cost-effectiveness of maintenance therapy based on molecular classification following treatment of primary epithelial ovarian cancer in the United States. JAMA Netw Open. 2020 Dec 1;3(12):e2028620. Article / Publication Details

First-Page Preview

Abstract of Review Article

Received: August 22, 2021
Accepted: November 29, 2021
Published online: January 10, 2022

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 5

ISSN: 2297-4725 (Print)
eISSN: 2297-475X (Online)

For additional information: https://www.karger.com/VIS

Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif