Role of proliferative marker index and KBTBD4 mutation in the pathological diagnosis of pineal parenchymal tumors

1.

Canning P, Cooper CDO, Krojer T et al (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem. https://doi.org/10.1074/jbc.M112.437996

Article  PubMed  PubMed Central  Google Scholar 

2.

Chi SN, Gardner SL, Levy AS et al (2004) Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J Clin Oncol. https://doi.org/10.1200/JCO.2004.12.126

Article  PubMed  Google Scholar 

3.

Choque-Velasquez J, Resendiz-Nieves JC, Jahromi BR et al (2019) Pineal parenchymal tumors of intermediate differentiation: a long-term follow-up study in Helsinki neurosurgery. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.10.128

Article  PubMed  Google Scholar 

4.

Committee of Brain Tumor Registry of Japan (2017) Report of brain tumor registry of Japan (2005–2008). Neurol Med Chir (Tokyo). https://doi.org/10.2176/nmc.sup.2017-0001

Article  Google Scholar 

5.

de Kock L, Priest JR, Foulkes WD et al (2020) An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol. https://doi.org/10.1007/s00401-019-01997-y

Article  PubMed  Google Scholar 

6.

de Kock L, Sabbaghian N, Druker H et al (2014) Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol. https://doi.org/10.1007/s00401-014-1318-7

Article  PubMed  PubMed Central  Google Scholar 

7.

Duregon E, Cassenti A, Pittaro A et al (2015) Better see to better agree: phosphohistone H3 increases interobserver agreement in mitotic count for meningioma grading and imposes new specific thresholds. Neuro Oncol. https://doi.org/10.1093/neuonc/nov002

Article  PubMed  PubMed Central  Google Scholar 

8.

Esbenshade AJ, Kocak M, Hershon L et al (2017) A phase II feasibility study of oral etoposide given concurrently with radiotherapy followed by dose intensive adjuvant chemotherapy for children with newly diagnosed high-risk medulloblastoma (protocol POG 9631): a report from the Children’s Oncology Group. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26373

Article  PubMed  PubMed Central  Google Scholar 

9.

Fauchon F, Jouvet A, Paquis P et al (2000) Parenchymal pineal tumors: a clinicopathological study of 76 cases. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/s0360-3016(99)00389-2

Article  PubMed  Google Scholar 

10.

Fevre-Montange M, Vasiljevic A, Frappaz D et al (2012) Utility of Ki67 immunostaining in the grading of pineal parenchymal tumours: a multicentre study. Neuropathol Appl Neurobiol. https://doi.org/10.1111/j.1365-2990.2011.01202.x

Article  PubMed  Google Scholar 

11.

Friedrich C, von Bueren AO, von Hoff K et al (2013) Treatment of young children with CNS-primitive neuroectodermal tumors/pineoblastomas in the prospective multicenter trial HIT 2000 using different chemotherapy regimens and radiotherapy. Neuro Oncol. https://doi.org/10.1093/neuonc/nos292

Article  PubMed  Google Scholar 

12.

Gajjar A, Chintagumpala M, Ashley D et al (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. https://doi.org/10.1016/s1470-2045(06)70867-1

Article  PubMed  Google Scholar 

13.

Gerber NU, von Hoff K, Resch A et al (2014) Treatment of children with central nervous system primitive neuroectodermal tumors/pinealoblastomas in the prospective multicentric trial HIT 2000 using hyperfractionated radiation therapy followed by maintenance chemotherapy. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2014.04.017

Article  PubMed  PubMed Central  Google Scholar 

14.

Gururangan S, McLaughlin C, Quinn J et al (2003) High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol. https://doi.org/10.1200/JCO.2003.10.096

Article  PubMed  Google Scholar 

15.

Ito T, Kanno H, Sato K et al (2014) Clinicopathologic study of pineal parenchymal tumors of intermediate differentiation. World Neurosurg. https://doi.org/10.1016/j.wneu.2013.02.007

Article  PubMed  Google Scholar 

16.

Jakacki RI, Burger PC, Kocak M et al (2015) Outcome and prognostic factors for children with supratentorial primitive neuroectodermal tumors treated with carboplatin during radiotherapy: a report from the Children’s Oncology Group. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.25405

Article  PubMed  PubMed Central  Google Scholar 

17.

Jouvet A, Saint-Pierre G, Fauchon F et al (2000) Pineal parenchymal tumors: a correlation of histological features with prognosis in 66 cases. Brain Pathol. https://doi.org/10.1111/j.1750-3639.2000.tb00242.x

Article  PubMed  Google Scholar 

18.

Jouvet A, Vasiljevic A, Nakazato Y et al (2016) Tumours of the pineal region. In: Louis D (ed) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research on Cancer, Lyon, pp 170–182

Google Scholar 

19.

Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. https://doi.org/10.1038/bmt.2012.244

Article  PubMed  PubMed Central  Google Scholar 

20.

Korogi Y, Takahashi M, Ushio Y (2001) MRI of pineal region tumors. J Neurooncol. https://doi.org/10.1023/a:1012773727022

Article  PubMed  Google Scholar 

21.

Kumar N, Srinivasa GY, Madan R et al (2018) Role of radiotherapy in residual pineal parenchymal tumors. Clin Neurol Neurosurg. https://doi.org/10.1016/j.clineuro.2018.01.027

Article  PubMed  Google Scholar 

22.

Lee JC, Mazor T, Lao R et al (2019) Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathol. https://doi.org/10.1007/s00401-019-01990-5

Article  PubMed  PubMed Central  Google Scholar 

23.

Li BK, Vasiljevic A, Dufour C et al (2020) Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a rare brain tumor consortium registry study. Acta Neuropathol. https://doi.org/10.1007/s00401-019-02111-y

Article  PubMed  PubMed Central  Google Scholar 

24.

Liu APY, Gudenas B, Lin T et al (2020) Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathol. https://doi.org/10.1007/s00401-019-02106-9

Article  PubMed  PubMed Central  Google Scholar 

25.

Mallick S, Benson R, Rath GK (2016) Patterns of care and survival outcomes in patients with pineal parenchymal tumor of intermediate differentiation: an individual patient data analysis. Radiother Oncol. https://doi.org/10.1016/j.radonc.2016.10.025

Article  PubMed  Google Scholar 

26.

Mynarek M, Pizer B, Dufour C et al (2017) Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma: analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US head start data. Neuro-Oncol. https://doi.org/10.1093/neuonc/now234

Article  PubMed  Google Scholar 

27.

Northcott PA, Buchhalter I, Morrissy AS et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature. https://doi.org/10.1038/nature22973

Article  PubMed  PubMed Central  Google Scholar 

28.

Parikh KA, Venable GT, Orr BA et al (2017) Pineoblastoma-the experience at St. Jude Children’s Research Hospital. Neurosurgery. https://doi.org/10.1093/neuros/nyx005

Article  PubMed  Google Scholar 

29.

Pfaff E, Aichmuller C, Sill M et al (2020) Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathol. https://doi.org/10.1007/s00401-019-02101-0

Article  PubMed  Google Scholar 

30.

Raleigh DR, Solomon DA, Lloyd SA et al (2017) Histopathologic review of pineal parenchymal tumors identifies novel morphologic subtypes and prognostic factors for outcome. Neuro Oncol. https://doi.org/10.1093/neuonc/now105

Article  PubMed  PubMed Central  Google Scholar 

31.

Tsumanuma I, Tanaka R, Washiyama K (1999) Clinicopathological study of pineal parenchymal tumors: correlation between histopathological features, proliferative potential, and prognosis. Brain Tumor Pathol. https://doi.org/10.1007/BF02478904

Article  PubMed  Google Scholar 

32.

Yu T, Sun X, Wang J et al (2016) Twenty-seven cases of pineal parenchymal tumours of intermediate differentiation: mitotic count, Ki-67 labelling index and extent of resection predict prognosis. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2014-309805

Article  PubMed  Google Scholar 

33.

Zhu P, Zhang CB, Yang P et al (2016) Phosphohistone H3 (pHH3) is a prognostic and epithelial to mesenchymal transition marker in diffuse gliomas. Oncotarget. https://doi.org/10.18632/oncotarget.7154

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif