Curcumin improves atherosclerosis by inhibiting the epigenetic repression of lncRNA MIAT to miR-124

1. Bennett, MR, Sinha, S, Owens, GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118: 692–702.
Google Scholar | Crossref | Medline | ISI2. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1789–1858.
Google Scholar | Crossref | Medline3. Ridker, PM, Danielson, E, Fonseca, FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195–2207.
Google Scholar | Crossref | Medline | ISI4. Ridker, PM, Everett, BM, Thuren, T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 2017; 377: 1119–1131.
Google Scholar | Crossref | Medline | ISI5. Akbik, D, Ghadiri, M, Chrzanowski, W, et al. Curcumin as a wound healing agent. Life Sci 2014; 116: 1–7.
Google Scholar | Crossref | Medline6. Gupta, SC, Patchva, S, Aggarwal, BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013; 15: 195–218.
Google Scholar | Crossref | Medline | ISI7. Hasan, ST, Zingg, JM, Kwan, P, et al. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis 2014; 232: 40–51.
Google Scholar | Crossref | Medline8. Chen, FY, Zhou, J, Guo, N, et al. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun 2015; 467: 872–878.
Google Scholar | Crossref | Medline9. Zhang, Z, Salisbury, D, Sallam, T. Long noncoding RNAs in atherosclerosis: JACC review topic of the week. J Am Coll Cardiol 2018; 72: 2380–2390.
Google Scholar | Crossref | Medline10. Carter, G, Miladinovic, B, Patel, AA, et al. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin 2015; 4: 102–107.
Google Scholar | Crossref | Medline11. Vausort, M, Wagner, DR, Devaux, Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 2014; 115: 668–677.
Google Scholar | Crossref | Medline | ISI12. Michalik, KM, You, X, Manavski, Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 2014; 114: 1389–1397.
Google Scholar | Crossref | Medline | ISI13. Ishii, N, Ozaki, K, Sato, H, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 2006; 51: 1087–1099.
Google Scholar | Crossref | Medline | ISI14. Rao, SQ, Hu, HL, Ye, N, et al. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr Res 2015; 166: 125–130.
Google Scholar | Crossref | Medline15. Zhu, M, Li, N, Luo, P, et al. Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke. J Stroke Cerebrovasc Dis 2018; 27: 326–337.
Google Scholar | Crossref | Medline16. Crea, F, Venalainen, E, Ci, X, et al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 2016; 8: 721–731.
Google Scholar | Crossref | Medline17. Sun, G, Li, Y, Ji, Z. Up-regulation of MIAT aggravates the atherosclerotic damage in atherosclerosis mice through the activation of PI3K/Akt signaling pathway. Drug Deliv 2019; 26: 641–649.
Google Scholar | Crossref | Medline18. Zhong, X, Ma, X, Zhang, L, et al. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother 2018; 97: 1078–1085.
Google Scholar | Crossref | Medline19. Zhao, SP, Yu, C, Yang, MS, et al. Long non-coding RNA FENDRR modulates autophagy through epigenetic suppression of ATG7 via binding PRC2 in acute pancreatitis. Inflammation 2021; 44:999–1013.
Google Scholar | Crossref | Medline20. Li, Y, Tian, L, Sun, D, et al. Curcumin ameliorates atherosclerosis through upregulation of miR-126. J Cell Physiol 2019; 234: 21049–21059.
Google Scholar | Crossref | Medline21. Lin, K, Chen, H, Chen, X, et al. Efficacy of curcumin on aortic atherosclerosis: a systematic review and meta-analysis in mouse studies and insights into possible mechanisms. Oxid Med Cell Longev 2020; 2020: 1520747.
Google Scholar | Crossref | Medline22. Koelwyn, GJ, Corr, EM, Erbay, E, et al. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 2018; 19: 526–537.
Google Scholar | Crossref | Medline23. Hansson, GK, Robertson, AK, Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu Rev Pathol 2006; 1: 297–329.
Google Scholar | Crossref | Medline | ISI24. Tabas, I . Russell Ross memorial lecture in vascular biology: molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37: 183–189.
Google Scholar | Crossref | Medline25. Ameruoso, A, Palomba, R, Palange, AL, et al. Ameliorating amyloid-beta fibrils triggered inflammation via curcumin-loaded polymeric nanoconstructs. Front Immunol 2017; 8: 1411.
Google Scholar | Crossref | Medline26. Ouyang, S, Yao, YH, Zhang, ZM, et al. Curcumin inhibits hypoxia inducible factor-1alpha-induced inflammation and apoptosis in macrophages through an ERK dependent pathway. Eur Rev Med Pharmacol Sci 2019; 23: 1816–1825.
Google Scholar | Medline27. Zhong, Y, Liu, T, Guo, Z. Curcumin inhibits ox-LDL-induced MCP-1 expression by suppressing the p38MAPK and NF-kappaB pathways in rat vascular smooth muscle cells. Inflamm Res 2012; 61: 61–67.
Google Scholar | Crossref | Medline28. Zhou, ZY, Chen, YQ, Wang, FY, et al. Effect of curcumin on down-expression of thrombospondin-4 induced by oxidized low-density lipoprotein in mouse macrophages. Biomed Mater Eng 2014; 24: 181–189.
Google Scholar | Medline29. Ballantyne, MD, Pinel, K, Dakin, R, et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 2016; 133: 2050–2065.
Google Scholar | Crossref | Medline30. Sallam, T, Jones, M, Thomas, BJ, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med 2018; 24: 304–312.
Google Scholar | Crossref | Medline31. Sallam, T, Jones, MC, Gilliland, T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 2016; 534: 124–128.
Google Scholar | Crossref | Medline32. Mitra, R, Chen, X, Greenawalt, EJ, et al. Decoding critical long non-coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nat Commun 2017; 8: 1604.
Google Scholar | Crossref | Medline33. Yan, B, Yao, J, Liu, JY, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 2015; 116: 1143–1156.
Google Scholar | Crossref | Medline34. Ye, ZM, Yang, S, Xia, YP, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 2019; 10: 138.
Google Scholar | Crossref | Medline35. Barrandon, C, Spiluttini, B, Bensaude, O. Non-coding RNAs regulating the transcriptional machinery. Biol Cell 2008; 100: 83–95.
Google Scholar | Crossref | Medline36. Bernstein, E, Allis, CD. RNA meets chromatin. Genes Dev 2005; 19: 1635–1655.
Google Scholar | Crossref | Medline37. Jeffery, L, Nakielny, S. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J Biol Chem 2004; 279: 49479–49487.
Google Scholar | Crossref | Medline38. Cai, B, Song, XQ, Cai, JP, et al. HOTAIR: a cancer-related long non-coding RNA. Neoplasma 2014; 61: 379–391.
Google Scholar | Crossref | Medline | ISI39. Wu, Y, Zhang, L, Wang, Y, et al. Long noncoding RNA HOTAIR involvement in cancer. Tumour Biol 2014; 35: 9531–9538.
Google Scholar | Crossref | Medline40. Anko, ML, Neugebauer, KM. RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci 2012; 37: 255–262.
Google Scholar | Crossref | Medline41. Volny, O, Kasickova, L, Coufalova, D, et al. microRNAs in cerebrovascular disease. Adv Exp Med Biol 2015; 888: 155–195.
Google Scholar | Crossref | Medline42. Yin, D, Li, Y, Fu, C, et al. Pro-angiogenic role of LncRNA HULC in microvascular endothelial cells via sequestrating miR-124. Cell Physiol Biochem 2018; 50: 2188–2202.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif