Co-Expression and Localization of Angiotensin-Converting Enzyme-2 (ACE2) and the Transmembrane Serine Protease 2 (TMPRSS2) in Paranasal Ciliated Epithelium of Patients with Chronic Rhinosinusitis

1. Wu, F, Zhao, S, Yu, B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
Google Scholar | Crossref | Medline2. Zu, ZY, Jiang, MD, Xu, PP, et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 2020;296(2):E15–E25.
Google Scholar | Crossref | Medline3. Hoffmann, M, Kleine-Weber, H, Schroeder, S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e8.
Google Scholar | Crossref | Medline4. World Health Organization. The impact of the COVID-19 pandemic on noncommunicable disease resources and services: results of a rapid assessment. 3 Sep 2020. https://www.who.int/publications/i/item/9789240010291).
Google Scholar5. Tuder, RM, Yun, JH. It takes two to tango: cigarette smoke partners with viruses to promote emphysema. J Clin Investig. 2008;118(8):2689–2693.
Google Scholar | Medline6. Brozyna, S, Ahern, J, Hodge, G, et al. Chemotactic mediators of Th1 T-cell trafficking in smokers and COPD patients. COPD. 2009;6(1):4–16.
Google Scholar | Crossref | Medline7. Saheb, SN, Saheb, SF, Alabed, M, et al. Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Methods Clin Dev. 2020;18:1–6.
Google Scholar | Crossref | Medline8. Sungnak, W, Huang, N, Bécavin, C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–687.
Google Scholar | Crossref | Medline9. Chen, Y, Guo, Y, Pan, Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525(1):135–140.
Google Scholar | Crossref10. Fokkens, WJ, Lund, VJ, Hopkins, C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58( Suppl S29):123–146.
Google Scholar11. Fujieda, S, Imoto, Y, Kato, Y, et al. Eosinophilic chronic rhinosinusitis. Allergol Int. 2019;68(4):403–412.
Google Scholar | Crossref | Medline12. Baba, S, Kagoya, R, Kondo, K, et al. T-cell phenotypes in chronic rhinosinusitis with nasal polyps in Japanese patients. Allergy Asthma Clin Immunol. 2015;11:33.
Google Scholar | Crossref | Medline13. Ishitoya, J, Sakuma, Y, Tsukuda, M. Eosinophilic chronic rhinosinusitis in Japan. Allergol Int. 2010;59(3):239–245.
Google Scholar | Crossref | Medline14. Lund, VJ, Kennedy, DW. Quantification for staging sinusitis. The staging and therapy group. Ann Otol Rhinol Laryngol Suppl. 1995;167:17–21.
Google Scholar | SAGE Journals15. Tokunaga, T, Sakashita, M, Haruna, T, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC study. Allergy. 2015;70(8):995–1003.
Google Scholar | Crossref | Medline16. Campa, VM, Iglesias, JM, Carcedo, MT, et al. Polyinosinic acid induces TNF and NO production as well as NF-κB and AP-1 transcriptional activation in the monocyte-macrophage cell line RAW 264.7. Inflamm Res. 2005;54(8):328–337.
Google Scholar | Crossref | Medline17. Xu, G, Zhang, P, Dang, R, et al. Dynamic changes of Th1 cytokines and the clinical significance of the IFN-γ/TNF-α ratio in acute brucellosis. Mediators Inflamm. 2019;2019:5869257.
Google Scholar | Crossref | Medline18. Sanders, JM, Monogue, ML, Jodlowski, TZ, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824–1836.
Google Scholar | Medline19. Cheng, H, Wang, Y, Wang, GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92(7):726–730.
Google Scholar | Crossref | Medline20. Keselman, A, Heller, N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front Immunol. 2015;6:568.
Google Scholar | Crossref | Medline21. Imai, Y, Kuba, K, Rao, S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116.
Google Scholar | Crossref | Medline22. Jia, HP, Look, DC, Shi, L, et al. ACE2 Receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614–14621.
Google Scholar | Crossref | Medline23. Hamming, I, Timens, W, Bulthuis, MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637.
Google Scholar | Crossref | Medline24. Iwata-Yoshikawa, N, Okamura, T, Shimizu, Y, et al. TMPRSS2 Contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93(6):e01815–e01818.
Google Scholar | Crossref | Medline25. Bugge, TH, Antalis, TM, Wu, Q. Type II transmembrane serine proteases. J Biol Chem. 2009;284(35):23177–23181.
Google Scholar | Crossref | Medline26. Kong, Q, Xiang, Z, Wu, Y, et al. Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. Mol Cancer. 2020;19(1):80.
Google Scholar | Crossref | Medline27. Zhang, J, Litvinova, M, Liang, Y, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368(6498):1481–1486.
Google Scholar | Crossref | Medline28. Yang, X, Yu, Y, Xu, J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481.
Google Scholar | Crossref | Medline29. Paats, MS, Bergen, IM, Hoogsteden, HC, et al. Systemic CD4+ and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD. Eur Respir J. 2012;40(2):330–337.
Google Scholar | Crossref | Medline30. Stevens, WW, Peters, AT, Tan, BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7(8):2812–2820. e3.
Google Scholar | Crossref | Medline31. Ziegler, CGK, Allon, SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181:1016–1035.
Google Scholar | Crossref | Medline32. Wang, M, Bu, X, Fang, G, et al. Distinct expression of SARS-CoV-2 receptor ACE2 correlates with endotypes of chronic rhinosinusitis with nasal polyps. Allergy. 2021;76(3):789–803.
Google Scholar | Crossref | Medline33. Jian, L, Yi, W, Zhang, N, et al. Perspective: cOVID-19, implications of nasal diseases and consequences for their management. J Allergy Clin Immunol. 2020;146(1):67–69.
Google Scholar | Crossref | Medline34. Kimura, H, Francisco, D, Conway, M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80–88.
Google Scholar | Crossref | Medline35. Wang, H, Song, J, Pan, L, et al. Regional differences in ACE2 expression in the sinonasal mucosa of adult Chinese patients with chronic rhinosinusitis. Allergy. 2021;76(5):1565–1568.
Google Scholar | Crossref | Medline36. Saheb, SF, Saheb, SN, Goel, S, et al. Are patients with chronic rhinosinusitis with nasal polyps at a decreased risk of COVID-19 infection? Int Forum Allergy Rhinol. 2020;10(10):1182–1185.
Google Scholar | Crossref | Medline37. Rodriguez-Morales, AJ, Cardona-Ospina, JA, Gutiérrez-Ocampo, E, et al. Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: https://www.lancovid.org. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623.
Google Scholar | Crossref | Medline38. Zou, L, Ruan, F, Huang, M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177–1179.
Google Scholar | Crossref | Medline39. Wölfel, R, Corman, VM, Guggemos, W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–469.
Google Scholar | Crossref | Medline40. Yu, IT, Li, Y, Wong, TW, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350(17):1731–1739.
Google Scholar | Crossref | Medline41. Lee, IT, Nakayama, T, Wu, CT, et al. ACE2 Localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun. 2020;11(1):5453.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif