Working memory capacity and dual mechanisms of cognitive control: An experimental-correlational approach

Ackerman, P. L., Beier, M. E., Boyle, M. D. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131(4), 567–589. https://doi.org/10.1037/0096-3445.131.4.567
Google Scholar | Crossref Ackerman, P. L., Beier, M. E., Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131(1), 30–60. https://doi.org/10.1037/0033-2909.131.1.30
Google Scholar | Crossref Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201
Google Scholar | Crossref Baddeley, A. D., Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89. https://doi.org/10.1016/S0079-7421(08)60452-1
Google Scholar | Crossref Ball, B. H. (2015). Cognitive control processes underlying continuous and transient monitoring processes in event-based prospective memory. (Doctoral dissertation, Arizona State University). https://repository.asu.edu/attachments/150526/content/Ball_asu_0010E_14793.pdf
Google Scholar Belletier, C., Normand, A., Camos, V., Barrouillet, P., Huguet, P. (2019). Choking under experimenter’s presence: Impact on proactive control and practical consequences for psychological science. Cognition, 189, 60–64. https://doi.org/10.1016/j.cognition.2019.03.018
Google Scholar | Crossref Boudewyn, M. A., Long, D. L., Traxler, M. J., Lesh, T. A., Dave, S., Mangun, G. R., Carter, C. S., Swaab, T. Y. (2015). Sensitivity to referential ambiguity in discourse: The role of attention, working memory, and verbal ability. Journal of Cognitive Neuroscience, 27(12), 2309–2323. https://doi.org/10.1162/jocn_a_00837
Google Scholar | Crossref Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. http://doi.org/10.1016/j.tics.2011.12.010
Google Scholar | Crossref Braver, T. S., Gray, J. R., Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Conway, A. R. A., Jarrold, C., Kane, M. J., Towse, J. N., Miyake, A. (Eds.), Variation in working memory (pp. 76–106). Oxford University Press.
Google Scholar Braver, T. S., Paxton, J. L., Locke, H. S., Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7351–7356. https://doi.org/10.1073/pnas.0808187106
Google Scholar | Crossref Braver, T. S., Satpute, A. B., Rush, B. K., Racine, C. A., Barch, D. M. (2005). Context processing and context maintenance in healthy aging and early stage dementia of the Alzheimer’s type. Psychology and Aging, 20(1), 33–46. https://doi.org/10.1037/0882-7974.20.1.33
Google Scholar | Crossref Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772
Google Scholar | Crossref | Medline | ISI Cooper, S. R., Gonthier, C., Barch, D. M., Braver, T. S. (2017). The role of psychometrics in individual differences research in cognition: A case study of the AX-CPT. Frontiers in Psychology, 8, Article 1482. https://doi.org/10.3389/fpsyg.2017.01482
Google Scholar | Crossref Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191. https://doi.org/10.1037/0033-2909.104.2.163
Google Scholar | Crossref Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12(11), 671–684. https://doi.org/10.1037/h0043943
Google Scholar | Crossref Daneman, M., Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422–433. https://doi.org/10.3758/BF03214546
Google Scholar | Crossref Engle, R. W., Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychology of Learning and Motivation, 44, 145–199. https://doi.org/10.1016/S0079-7421(03)44005-X
Google Scholar | Crossref Engle, R. W., Kane, M. J., Tuholski, S. W. (1999a). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In Miyake, A., Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge University Press.
Google Scholar | Crossref Fry, A. F., Hale, S. (2000). Relationships among processing speed, working memory and fluid intelligence in children. Biological Psychology, 54(1–3), 1–34. https://doi.org/10.1016/s0301-0511(00)00051-x
Google Scholar | Crossref Gonthier, C., Macnamara, B. N., Chow, M., Conway, A. R. A., Braver, T. S. (2016). Inducing proactive control shifts in the AX-CPT. Frontiers in Psychology, 7, Article 1822. https://doi.org/10.3389/fpsyg.2016.01822
Google Scholar | Crossref Gonthier, C., Thomassin, N., Roulin, J.-L. (2016). The composite complex span: French validation of a short working memory task. Behavior Research Methods, 48, 233–242. http://doi.org/10.3758/s13428-015-0566-3
Google Scholar | Crossref Gonthier, C., Zira, M., Colé, P., Blaye, A. (2019). Evidencing the developmental shift from reactive to proactive control in early childhood and its relationship to working memory. Journal of Experimental Child Psychology, 177, 1–16. https://doi.org/10.1016/j.jecp.2018.07.001
Google Scholar | Crossref Hedge, C., Powell, G., Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186.
Google Scholar | Crossref Henderson, D., Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., Silverstein, S. M., Strauss, M. E., MacDonald, A. W.. (2012). Optimization of a goal maintenance task for use in clinical applications. Schizophrenia Bulletin, 38(1), 104–113. https://doi.org/10.1093/schbul/sbr172
Google Scholar | Crossref Kane, M. J., Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70. https://doi.org/10.1037/0096-3445.132.1.47
Google Scholar | Crossref Kovacs, K., Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27(3), 151–177. https://doi.org/10.1080/1047840X.2016.1153946
Google Scholar | Crossref MacDonald, A. W., Goghari, V. M., Hicks, B. M., Flory, J. D., Carter, C. S., Manuck, S. B. (2005). A convergent-divergent approach to context processing, general intellectual functioning, and the genetic liability to schizophrenia. Neuropsychology, 19(6), 814–821. https://doi.org/10.1037/0894-4105.19.6.814
Google Scholar | Crossref McDonald, R. P. (1978). Generalizability in factorable domains: “Domain validity and generalizability.” Educational and Psychological Measurement, 38(1), 75–79. https://doi.org/10.1177/001316447803800111
Google Scholar | SAGE Journals Oberauer, K., Süß, H. M., Schulze, R., Wilhelm, O., Wittmann, W. W. (2000). Working memory capacity–facets of a cognitive ability construct. Personality and Individual Differences, 29(6), 1017–1045.
Google Scholar | Crossref Parsons, S., Kruijt, A.-W., Fox, E. (2019). Psychological science needs a standard practice of reporting the reliability of cognitive-behavioral measurements. Advances in Methods and Practices in Psychological Science, 2(4), 378–395. https://doi.org/10.1177/2515245919879695
Google Scholar | SAGE Journals Paxton, J. L., Barch, D. M., Racine, C. A., Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 1010–1028. https://doi.org/10.1093/cercor/bhm135
Google Scholar | Crossref Paxton, J. L., Barch, D. M., Storandt, M., Braver, T. S. (2006). Effects of environmental support and strategy training on older adults’ use of context. Psychology and Aging, 21(3), 499–509. https://doi.org/10.1037/0882-7974.21.3.499
Google Scholar | Crossref Redick, T. S. (2014). Cognitive control in context: Working memory capacity and proactive control. Acta Psychologica, 145, 1–9. https://doi.org/10.1016/j.actpsy.2013.10.010
Google Scholar | Crossref Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., Engle, R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28(3), 164–171. https://doi.org/10.1027/1015-5759/a000123
Google Scholar | Crossref Redick, T. S., Engle, R. W. (2011). Integrating working memory capacity and context-processing views of cognitive control. Quarterly Journal of Experimental Psychology, 64(6), 1048–1055. https://doi.org/10.1080/17470218.2011.577226
Google Scholar | SAGE Journals Revelle, W., Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145–154. https://doi.org/10.1007/s11336-008-9102-z
Google Scholar | Crossref Richmond, L. L., Redick, T. S., Braver, T. S. (2015). Remembering to prepare: The benefits (and costs) of high working memory capacity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1764–1777. https://doi.org/10.1037/xlm0000122
Google Scholar | Crossref Schelble, J. L., Therriault, D. J., Miller, M. D. (2012). Classifying retrieval strategies as a function of working memory. Memory & Cognition, 40, 218–230. https://doi.org/10.3758/s13421-011-0149-1
Google Scholar | Crossref Shah, P., Miyake, A. (1999). Models of working memory: An introduction. In Miyake, A., Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 1–27). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909
Google Scholar | Crossref Simmering, V. R., Perone, S. (2013). Working memory capacity as a dynamic process. Frontiers in Psychology, 3, Article 567. https://doi.org/10.3389/fpsyg.2012.00567
Google Scholar | Crossref Stawarczyk, D., Majerus, S., Catale, C., D’Argembeau, A. (2014). Relationships between mind-wandering and attentional control abilities in young adults and adolescents. Acta Psychologica, 148, 25–36. https://doi.org/10.1016/j.actpsy.2014.01.007
Google Scholar | Crossref Thomassin, N., Gonthier, C., Guerraz, M., Roulin, J.-L. (2015). The hard fall effect: High working memory capacity leads to a higher, but less robust short-term memory performance. Experimental Psychology, 62(2), 89–97. https://doi.org/10.1027/1618-3169/a000276
Google Scholar | Crossref Troller-Renfree, S. V., Buzzell, G. A., Fox, N. A. (2020). Changes in working memory influence the transition from reactive to proactive cognitive control during childhood. Developmental Science, 23, Article e12959. https://doi.org/10.1111/desc.12959
Google Scholar | Crossref Unsworth, N., Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132. https://doi.org/10.1037/0033-295X.114.1.104
Google Scholar | Crossref Unsworth, N., Fukuda, K., Awh, E., Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1–26. https://doi.org/10.1016/j.cogpsych.2014.01.003
Google Scholar | Crossref Unsworth, N., Heitz, R. P., Schrock, J. C., Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. https://doi.org/10.3758/bf03192720
Google Scholar | Crossref Wiemers, E. A., Redick, T. S. (2018). Working memory capacity and intra-individual variability of proactive control. Acta Psychologica, 182, 21–31. https://doi.org/10.1016/j.actpsy.2017.11.002
Google Scholar | Crossref Wiley, J., Jarosz, A. F. (2012). How working memory capacity affects problem solving. In Ross, B. H. (Ed.), The psychology of learning and motivation (Vol. 56, pp. 185–227). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-394393-4.00006-6
Google Scholar | Crossref

留言 (0)

沒有登入
gif