SPOCD1 regulated by miR-133a-3p promotes hepatocellular carcinoma invasion and metastasis

1. Sung, H, Ferlay, J, Siegel, RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–249. DOI: 10.3322/caac.21660.
Google Scholar | Crossref | Medline2. Blanc, JF, Debaillon-Vesque, A, Roth, G, et al. Hepatocellular carcinoma: French Intergroup Clinical Practice Guidelines for diagnosis, treatment and follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, AFEF, SIAD, SFR/FRI). Clin Res Hepatol Gastroenterol 2021; 45: 101590. DOI: 10.1016/j.clinre.2020.101590.
Google Scholar | Crossref3. Marrero, JA, Kulik, LM, Sirlin, CB, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018; 68: 723–750. DOI: 10.1002/hep.29913.
Google Scholar | Crossref | Medline4. Marrero, JA. Surveillance for hepatocellular carcinoma. Clin Liver Dis 2020; 24: 611–621. DOI: 10.1016/j.cld.2020.07.013.
Google Scholar | Crossref5. Zhang, K, Song, P, Gao, J, et al. Perspectives on a combined test of multi serum biomarkers in China: towards screening for and diagnosing hepatocellular carcinoma at an earlier stage. Drug Discov Ther 2014; 8: 102–109. DOI: 10.5582/ddt.2014.01026.
Google Scholar | Crossref6. Kudo, M, Han, KH, Kokudo, N, et al. Liver Cancer Working Group report. Jpn J Clin Oncol 2010; 40: i19–i27. DOI: 10.1093/jjco/hyq123.
Google Scholar | Crossref7. Howlader, N, Noone, AM, Krapcho, M, et al. (eds) SEER Cancer Statistics Review, 1975–2016. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/csr/1975_2016/.
Google Scholar8. Liu, D, Yang, Y, Yan, A, et al. SPOCD1 accelerates ovarian cancer progression and inhibits cell apoptosis via the PI3K/AKT pathway. Onco Targets Ther 2020; 13: 351–359. DOI: 10.2147/OTT.S200317.
Google Scholar | Crossref9. Liang, J, Zhao, H, Hu, J, et al. SPOCD1 promotes cell proliferation and inhibits cell apoptosis in human osteosarcoma. Mol Med Rep 2018; 17: 3218–3225. DOI: 10.3892/mmr.2017.8263.
Google Scholar | Medline10. Liu, Q, Wang, XY, Qin, YY, et al. SPOCD1 promotes the proliferation and metastasis of glioma cells by up-regulating PTX3. Am J Cancer Res 2018; 8: 624–635.
Google Scholar11. Shukla, GC, Singh, J, Barik, S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 2011; 3: 83–92.
Google Scholar | Medline12. Ghafouri-Fard, S, Honarmand Tamizkar, K, Hussen, BM, et al. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219: 153369. DOI: 10.1016/j.prp.2021.153369.
Google Scholar | Crossref13. Guo, H, Wang, Y, Jia, W, et al. MiR-133a-3p relieves the oxidative stress induced trophoblast cell apoptosis through the BACH1/Nrf2/HO-1 signaling pathway. Physiol Res 2021; 70: 67–78. DOI: 10.33549/physiolres.934506.
Google Scholar | Crossref14. Yin, Y, Du, L, Li, X, et al. miR-133a-3p suppresses cell proliferation, migration, and invasion and promotes apoptosis in esophageal squamous cell carcinoma. J Cell Physiol 2019; 234: 12757–12770. DOI: 10.1002/jcp.27896.
Google Scholar | Crossref15. He, B, Lin, X, Tian, F, et al. MiR-133a-3p inhibits oral squamous cell carcinoma (OSCC) proliferation and invasion by suppressing COL1A1. J Cell Biochem 2018; 119: 338–346. DOI: 10.1002/jcb.26182.
Google Scholar | Crossref16. Xia, W, Jie, W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway. Cancer Cell Int 2020; 20: 94. DOI: 10.1186/s12935-020-1098-1.
Google Scholar | Crossref17. Li, JP, Zhang, HM, Liu, MJ, et al. miR-133a-3p/FOXP3 axis regulates cell proliferation and autophagy in gastric cancer. J Cell Biochem 2020; 121: 3392–3405. DOI: 10.1002/jcb.29613.
Google Scholar | Crossref | Medline18. Tang, Y, Pan, J, Huang, S, et al. Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling. J Exp Clin Cancer Res 2018; 37: 160. DOI: 10.1186/s13046-018-0813-4.
Google Scholar | Crossref | Medline19. Huang, CC, Lee, CC, Lin, HH, et al. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep 2016; 6: 29256. DOI: 10.1038/srep29256.
Google Scholar | Crossref20. Zhao, R, Tin, L, Zhang, Y, et al. EF24 suppresses invasion and migration of hepatocellular carcinoma cells in vitro via inhibiting the phosphorylation of Src. Biomed Res Int 2016; 2016: 8569684. DOI: 10.1155/2016/8569684.
Google Scholar | Crossref21. Huang, CC, Chen, KL, Cheung, CHA, et al. Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. Free Radic Biol Med 2013; 65: 1473–1486. DOI: 10.1016/j.freeradbiomed.2013.07.020.
Google Scholar | Crossref22. Huang, CC, Chang, WS. Cooperation between NRF-2 and YY-1 transcription factors is essential for triggering the expression of the PREPL-C2ORF34 bidirectional gene pair. BMC Mol Biol 2009; 10: 67. DOI: 10.1186/1471-2199-10-67.
Google Scholar | Crossref23. Ward, EM, Sherman, RL, Henley, SJ, et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20–49 years. J Natl Cancer Inst 2019; 111: 1279–1297. DOI: 10.1093/jnci/djz106.
Google Scholar | Crossref | Medline24. Aly, A, Ronnebaum, S, Patel, D, et al. Epidemiologic, humanistic and economic burden of hepatocellular carcinoma in the USA: a systematic literature review. Hepat Oncol 2020; 7: HEP27. DOI: 10.2217/hep-2020-0024.
Google Scholar | Crossref25. Petrick, JL, Kelly, SP, Altekruse, SF, et al. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol 2016; 34: 1787–1794. DOI: 10.1200/JCO.2015.64.7412.
Google Scholar | Crossref | Medline26. Song, T, Wang, C, Guo, C, et al. Pentraxin 3 overexpression accelerated tumor metastasis and indicated poor prognosis in hepatocellular carcinoma via driving epithelial-mesenchymal transition. J Cancer 2018; 9: 2650–2658. DOI: 10.7150/jca.25188.
Google Scholar | Crossref27. Feder, S, Haberl, EM, Spirk, M, et al. Pentraxin-3 is not related to disease severity in cirrhosis and hepatocellular carcinoma patients. Clin Exp Med 2020; 20: 289–297. DOI: 10.1007/s10238-020-00617-4.
Google Scholar | Crossref28. Schmitz, KJ, Wohlschlaeger, J, Lang, H, et al. Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 2008; 48: 83–90. DOI: 10.1016/j.jhep.2007.08.018.
Google Scholar | Crossref | Medline | ISI29. Ferrin, G, Guerrero, M, Amado, V, et al. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int J Mol Sci 2020; 21: 1266. DOI: 10.3390/ijms21041266.
Google Scholar | Crossref30. Song, J, Guan, Z, Song, C, et al. Apatinib suppresses the migration, invasion and angiogenesis of hepatocellular carcinoma cells by blocking VEGF and PI3K/AKT signaling pathways. Mol Med Rep 2021; 23: 429. DOI: 10.3892/mmr.2021.12068.
Google Scholar | Crossref31. Hussen, BM, Hidayat, HJ, Salihi, A, et al. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021; 138: 111528. DOI: 10.1016/j.biopha.2021.111528.
Google Scholar | Crossref32. Onishi, M, Ochiya, T, Tanaka, Y. MicroRNA and liver cancer. Cancer Drug Resist 2020; 3: 385–400. DOI: 10.20517/cdr.2019.110.
Google Scholar33. Xu, X, Tao, Y, Shan, L, et al. The role of microRNAs in hepatocellular carcinoma. J Cancer 2018; 9: 3557–3569. DOI: 10.7150/jca.26350.
Google Scholar | Crossref | Medline34. Li, J, Liu, X, Wang, W, et al. miR-133a-3p promotes apoptosis and induces cell cycle arrest by targeting CREB1 in retinoblastoma. Arch Med Sci 2020; 16: 941–956. DOI: 10.5114/aoms.2019.86901.
Google Scholar | Crossref35. Shi, W, Tang, T, Li, X, et al. Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. J Exp Clin Cancer Res 2019; 38: 429. DOI: 10.1186/s13046-019-1400-z.
Google Scholar | Crossref36. Qu, Z, Li, S. Long noncoding RNA LINC01278 favors the progression of osteosarcoma via modulating miR-133a-3p/PTHR1 signaling. J Cell Physiol 2020. DOI: 10.1002/jcp.29582.
Google Scholar | Crossref37. Han, S, Ding, X, Wang, S, et al. miR-133a-3p regulates hepatocellular carcinoma progression through targeting CORO1C. Cancer Manag Res 2020; 12: 8685–8693. DOI: 10.2147/CMAR.S254617.
Google Scholar | Crossref

留言 (0)

沒有登入
gif