Multimodal Imaging Biomarker-Based Model Using Stratification Strategies for Predicting Upper Extremity Motor Recovery in Severe Stroke Patients

1. Stinear, CM . Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16:826-836.
Google Scholar | Crossref | Medline2. Stinear, CM, Ward, NS. How useful is imaging in predicting outcomes in stroke rehabilitation? Int J Stroke. 2013;8:33-37.
Google Scholar | SAGE Journals | ISI3. Feng, W, Wang, J, Chhatbar, PY, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015;78:860-870.
Google Scholar | Crossref | Medline | ISI4. Prabhakaran, S, Zarahn, E, Riley, C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation Neural Repair. 2007;22:64-71.
Google Scholar | SAGE Journals | ISI5. Vogt, G, Laage, R, Shuaib, A, Schneider, A. Initial lesion volume is an independent predictor of clinical stroke outcome at day 90. Stroke. 2012;43:1266-1272.
Google Scholar | Crossref | Medline | ISI6. Boyd, LA, Hayward, KS, Ward, NS, et al. Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabilitation Neural Repair. 2017;31:864-876.
Google Scholar | SAGE Journals | ISI7. Wang, LE, Tittgemeyer, M, Imperati, D, et al. Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp. 2012;33:2941-2956.
Google Scholar | Crossref | Medline | ISI8. Li, Y, Wu, P, Liang, F, Huang, W. The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients. PLoS One. 2015;10:e0122615.
Google Scholar | Crossref | Medline9. Schulz, R, Frey, BM, Koch, P, et al. Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke. Cerebr Cortex. 2015;27:635-645.
Google Scholar10. Manto, M, Bower, JM, Conforto, AB, et al. Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457-487.
Google Scholar | Crossref | Medline | ISI11. Proville, RD, Spolidoro, M, Guyon, N, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17:1233-1239.
Google Scholar | Crossref | Medline12. Wahl, M, Lauterbach-Soon, B, Hattingen, E, et al. Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci. 2007;27:12132-12138.
Google Scholar | Crossref | Medline | ISI13. Park, C-h, Chang, WH, Ohn, SH, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42:1357-1362.
Google Scholar | Crossref | Medline | ISI14. Lee, J, Park, E, Lee, A, Chang, WH, Kim, D-S, Kim, Y-H. Alteration and role of iand Intrahemispheric connectivity in motor network after stroke. Brain Topogr. 2018;31:708-719.
Google Scholar | Crossref | Medline15. Carter, AR, Astafiev, SV, Lang, CE, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67:365-375.
Google Scholar | Medline | ISI16. Chen, JL, Schlaug, G. Erratum: Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Sci Rep. 2016;6:24960.
Google Scholar | Crossref | Medline17. Siegel, JS, Ramsey, LE, Snyder, AZ, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci Unit States Am. 2016;113:E4367-E4376.
Google Scholar | Crossref | Medline | ISI18. Byblow, WD, Stinear, CM, Barber, PA, Petoe, MA, Ackerley, SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015;78:848-859.
Google Scholar | Crossref | Medline | ISI19. Stinear, CM, Byblow, WD, Ackerley, SJ, Smith, M-C, Borges, VM, Barber, PA. Proportional motor recovery after stroke. Stroke. 2017;48:795-798.
Google Scholar | Crossref | Medline | ISI20. Woytowicz, EJ, Rietschel, JC, Goodman, RN, et al. Determining levels of upper extremity movement impairment by applying a cluster analysis to the Fugl-Meyer assessment of the upper extremity in chronic stroke. Arch Phys Med Rehabil. 2017;98:456-462.
Google Scholar | Crossref | Medline21. Hiragami, S, Inoue, Y, Harada, K. Minimal clinically important difference for the Fugl-Meyer assessment of the upper extremity in convalescent stroke patients with moderate to severe hemiparesis. J Phys Ther Sci. 2019;31:917-921.
Google Scholar | Crossref | Medline22. Schulz, R, Park, C-H, Boudrias, M-H, Gerloff, C, Hummel, FC, Ward, NS. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke. 2012;43:2248-2251.
Google Scholar | Crossref | Medline | ISI23. Zhu, LL, Lindenberg, R, Alexander, MP, Schlaug, G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke. 2010;41:910-915.
Google Scholar | Crossref | Medline | ISI24. Mori, S, Oishi, K, Jiang, H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570-582.
Google Scholar | Crossref | Medline | ISI25. Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273-289.
Google Scholar | Crossref | Medline | ISI26. Heuschmann, PU, Wiedmann, S, Wellwood, I, et al. Three-month stroke outcome: the European registers of stroke (EROS) investigators. Neurology. 2011;76:159-165.
Google Scholar | Crossref | Medline27. Ntaios, G, Faouzi, M, Ferrari, J, Lang, W, Vemmos, K, Michel, P. An integer-based score to predict functional outcome in acute ischemic stroke: the ASTRAL score. Neurology. 2012;78:1916-1922.
Google Scholar | Crossref | Medline | ISI28. Rehme, AK, Eickhoff, SB, Wang, LE, Fink, GR, Grefkes, C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage. 2011;55:1147-1158.
Google Scholar | Crossref | Medline | ISI29. Penhune, VB, Steele, CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226:579-591.
Google Scholar | Crossref | Medline | ISI30. Knyazeva, MG . Splenium of corpus callosum: patterns of interhemispheric interaction in children and adults. Neural Plast. 2013;2013(4):639430.
Google Scholar | Medline31. Gazzaniga, MS, Freedman, H. Observations on visual processes after posterior callosal section. Neurology. 1973;23(10):1126-1130.
Google Scholar | Crossref | Medline32. Sugishita, M, Otomo, K, Yamazaki, K, Shimizu, H, Yoshioka, M, Shinohara, A. Dichotic listening in patients with partial section of the corpus callosum. Brain. 1995;118:417-427.
Google Scholar | Crossref | Medline33. Johansson, BB . Multisensory stimulation in stroke rehabilitation. Front Hum Neurosci. 2012;6:60.
Google Scholar | Crossref | Medline34. Molenberghs, P, Cunnington, R, Mattingley, JB. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev. 2012;36:341-349.
Google Scholar | Crossref | Medline | ISI35. Davidson, RJ, Hugdahl, K. Brain Asymmetry. Cambridge, MA: Mit Press; 1996.
Google Scholar36. Zatorre, RJ, Belin, P, Penhune, VB. Structure and function of auditory cortex: music and speech. Trends Cognit Sci. 2002;6:37-46.
Google Scholar | Crossref | Medline | ISI37. Liégeois-Chauvel, C, De Graaf, JB, Laguitton, V, Chauvel, P. Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cerebr Cortex. 1999;9:484-496.
Google Scholar | Crossref | Medline38. Binder, JR, Frost, JA, Hammeke, TA, et al. Human temporal lobe activation by speech and nonspeech sounds. Cerebr Cortex. 2000;10:512-528.
Google Scholar | Crossref | Medline | ISI39. Mesulam, M-M . Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28:597-613.
Google Scholar | Crossref | Medline | ISI40. Collignon, O, Lassonde, M, Lepore, F, Bastien, D, Veraart, C. Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cerebr Cortex. 2006;17:457-465.
Google Scholar | Crossref | Medline41. Pizzi, A, Carrai, R, Falsini, C, Martini, M, Verdesca, S, Grippo, A. Prognostic value of motor evoked potentials in motor function recovery of upper limb after stroke. J Rehabil Med. 2009;41:654-660.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif