Sometimes nothing is simply nothing: Automatic processing of empty sets

Banks, W. P . (1977). Encoding and processing of symbolic information in comparative judgments. The Psychology of Learning and Motivation, 11, 101–159.
Google Scholar | Crossref Bargh, J. A . (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105, 181–199.
Google Scholar | Crossref | Medline | ISI Beran, M. J . (2016). “Zeroing” in on mathematics in the monkey brain. Learning and Behavior, 44, 4–6.
Google Scholar | Crossref | Medline Beran, M. J., Perdue, B. M., Evans, T. A. (2015). Monkey mathematical abilities. In Cohen Kadosh, R., Dowker, A. (Eds.), The Oxford handbook of mathematical cognition (pp. 237–257). Oxford University Press.
Google Scholar Besner, D., Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17, 467–472.
Google Scholar | Crossref | Medline | ISI Bialystok, E., Codd, J. (2000). Representing quantity beyond whole numbers: Some, none, and part. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 54, 117–128.
Google Scholar | Crossref | Medline Biro, D., Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–199.
Google Scholar | Crossref | Medline Brenner, E., Smeets, J. B. (1996). Size illusion influences how we lift but not how we grasp an object. Experimental Brain Research, 111, 473–476.
Google Scholar | Crossref | Medline | ISI Campbell, J. I . (1994). Architectures for numerical cognition. Cognition, 53, 1–44.
Google Scholar | Crossref | Medline | ISI Campbell, J. I., Clark, J. M. (1988). An encoding-complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology: General, 117, 204–214.
Google Scholar | Crossref | ISI Campbell, J. I., Thompson, V. A. (2012). MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis. Behavior Research Methods, 44(4), 1255–1265.
Google Scholar | Crossref | Medline Chandler, P., Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.
Google Scholar | Crossref | ISI Clayton, S., Gilmore, C., Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177–184.
Google Scholar | Crossref | Medline Cohen Kadosh, R., Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–328.
Google Scholar | Crossref | Medline | ISI Cooper, G., Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347–362.
Google Scholar | Crossref | ISI Dehaene, S . (1992). Varieties of numerical abilities. Cognition, 44, 1–42.
Google Scholar | Crossref | Medline | ISI Dehaene, S., Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.
Google Scholar De Hevia, M. D., Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110, 198–207.
Google Scholar | Crossref | Medline | ISI Fias, W . (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250–259.
Google Scholar | Crossref | Medline | ISI Flanagan, J. R., Beltzner, M. A. (2000). Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nature Neuroscience, 3(7), 737–741.
Google Scholar | Crossref | Medline | ISI Gallistel, C. R., Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.
Google Scholar | Crossref | Medline | ISI Gebuis, T., Cohen Kadosh, R., de Haan, E., Henik, A. (2009). Automatic quantity processing in 5-year olds and adults. Cognitive Processing, 10, 133–142.
Google Scholar | Crossref | Medline | ISI Gebuis, T., Cohen Kadosh, R., Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35.
Google Scholar | Crossref | Medline | ISI Gebuis, T., Gevers, W. (2011). Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009). Cognition, 121, 248–252.
Google Scholar | Crossref | Medline | ISI Gebuis, T., Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986.
Google Scholar | Crossref | Medline | ISI Gebuis, T., Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642–648.
Google Scholar | Crossref | Medline | ISI Gebuis, T., Reynvoet, B. (2014). The neural mechanism underlying ordinal numerosity processing. Journal of Cognitive Neuroscience, 26, 1013–1020.
Google Scholar | Crossref | Medline Gordon, A. M., Forssberg, H., Johansson, R. S., Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83, 477–482.
Google Scholar | Crossref | Medline | ISI Henik, A., Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory and Cognition, 10, 389–395.
Google Scholar | Crossref | Medline | ISI Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360, 1124–1126.
Google Scholar | Crossref | Medline Hurewitz, F., Gelman, R., Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103, 19599–19604.
Google Scholar | Crossref | Medline | ISI Jeffreys, H . (1961). Theory of probability. Oxford, UK: Oxford University Press.
Google Scholar Kallai, A. Y., Tzelgov, J. (2009). A generalized fraction: An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35, 1845–1864.
Google Scholar | Crossref | Medline | ISI Leibovich, T., Henik, A. (2014). Comparing performance in discrete and continuous comparison tasks. Quarterly Journal of Experimental Psychology, 67, 899–917.
Google Scholar | SAGE Journals | ISI Leibovich, T., Katzin, N., Harel, M., Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, Article e164.
Google Scholar | Crossref Leth-Steensen, C., Marley, A. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107, 62–100.
Google Scholar | Crossref | Medline | ISI Liszkowski, U., Schäfer, M., Carpenter, M., Tomasello, M. (2009). Prelinguistic infants, but not chimpanzees, communicate about absent entities. Psychological Science, 20, 654–660.
Google Scholar | SAGE Journals | ISI Lourenco, S. F., Ayzenberg, V., Lyu, J. (2016). A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex, 81, 93–103.
Google Scholar | Crossref | Medline Merritt, D. J., Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 91–97.
Google Scholar | Crossref | Medline Merritt, D. J., Rugani, R., Brannon, E. M. (2009). Empty sets as part of the numerical continuum: Conceptual precursors to the zero concept in rhesus monkeys. Journal of Experimental Psychology: General, 138, 258–269.
Google Scholar | Crossref | Medline Moyer, R. S., Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.
Google Scholar | Crossref | Medline | ISI Nieder, A . (2016). Representing something out of nothing: The dawning of zero. Trends in Cognitive Sciences, 20, 830–842.
Google Scholar | Crossref | Medline Nys, J., Content, A. (2012). Judgement of discrete and continuous quantity in adults: Number counts! Quarterly Journal of Experimental Psychology, 65(4), 675–690.
Google Scholar | SAGE Journals | ISI Okuyama, S., Kuki, T., Mushiake, H. (2015). Representation of the numerosity “zero” in the parietal cortex of the monkey. Scientific Reports, 5, Article 10059.
Google Scholar | Crossref Pansky, A., Algom, D. (2002). Comparative judgment of numerosity and numerical magnitude: Attention preempts automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 259–274.
Google Scholar | Crossref | Medline | ISI Pepperberg, I. M . (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.
Google Scholar | Crossref | Medline | ISI Pepperberg, I. M., Gordon, J. D. (2005). Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197–209.
Google Scholar | Crossref | Medline | ISI Perruchet, P., Vinter, A. (2002). The self-organizing consciousness as an alternative model of the mind. Behavioral and Brain Sciences, 25, 360–380.
Google Scholar | Crossref Pinhas, M., Buchman, C., Lavro, D., Mesika, D., Tzelgov, J., Berger, A. (2015). The neural signatures of processing semantic end values in automatic number comparisons. Frontiers in Human Neuroscience, 9, Article 645.
Google Scholar | Crossref | Medline Pinhas, M., Pothos, E. M., Tzelgov, J. (2013). Zooming in and out from the mental number line: Evidence for a number range effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 972–976.
Google Scholar | Crossref | Medline | IS

留言 (0)

沒有登入
gif