Neuromusculoskeletal Health in Pediatric Obesity: Incorporating Evidence into Clinical Examination

1.

•• Tsiros MD, Tian EJ, Shultz SP, Olds T, Hills AP, Duff J, et al. Obesity, the new childhood disability? An umbrella review on the association between adiposity and physical function. Obes Rev. 2020;21: e13121. https://doi.org/10.1111/obr.13121. From the published evidence to date it is clear that children and adolescents with obesity have a greater risk of neuromusculoskeletal impairment which can adversely affect their physical function.

Article  PubMed  Google Scholar 

2.

Sanders RH, Han A, Baker JS, Cobley S. Childhood obesity and its physical and psychological co-morbidities: a systematic review of Australian children and adolescents. Eur J Pediatr. 2015;174(6):715–46.

Article  Google Scholar 

3.

Palmer AJ, Poveda JL, Martinez-Laguna D, Reyes C, de Bont J, Silman A et al. Childhood overweight and obesity and back pain risk: a cohort study of 466 997 children. BMJ open. 2020;10(9):e036023.

4.

Azabagic S, Pranjic N. The site of musculoskeletal pain in school children with excessive body weight and obesity in Bosnia and Herzegovina. Materia socio-medica. 2019;31(2):88.

Article  Google Scholar 

5.

• García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49(7):1079–94. Muscular fitness during childhood is negatively associated with obesity and cardiometabolic risk factors but positvely associated with bone health over time.

Article  Google Scholar 

6.

Grao-Cruces A, Ruiz-Ariza A, De La Torre-Cruz MJ, Martínez-López EJ. Students with excess weight obtain lower physical fitness test scores in physical education than normal weight pairs: myth or reality? Journal of Physical Education and Sport. 2018;18(3):1562–71.

Google Scholar 

7.

Mahaffey R, Morrison SC, Stephensen D, Drechsler WI. Clinical outcome measures for monitoring physical function in pediatric obesity: an integrative review. Obesity. 2016;24(5):993–1017.

Article  Google Scholar 

8.

Thivel D, Ring-Dimitriou S, Weghuber D, Frelut ML, O’Malley G. Muscle strength and fitness in pediatric obesity: a systematic review from the European Childhood Obesity Group. Obes Facts. 2016;9(1):52–63. https://doi.org/10.1159/000443687.

Article  PubMed  PubMed Central  Google Scholar 

9.

Barnett LM, Lai SK, Veldman SLC, Hardy LL, Cliff DP, Morgan PJ, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):1663–88. https://doi.org/10.1007/s40279-016-0495-z.

Article  PubMed  PubMed Central  Google Scholar 

10.

Thivel D, Isacco L, O’Malley G, Duche P. Pediatric obesity and perceived exertion: difference between weight-bearing and non-weight-bearing exercises performed at different intensities. J Sports Sci. 2016;34(5):389–94.

CAS  Article  Google Scholar 

11.

Tompkins CL, Flanagan T, Lavoie J, Brock DW. Heart rate and perceived exertion in healthy weight and obese children during a self-selected physical activity program. J Phys Act Health. 2015;12(7):976–81.

Article  Google Scholar 

12.

Stankov I, Olds T, Cargo M. Overweight and obese adolescents: what turns them off physical activity? Int J Behav Nutr Phys Act. 2012;9(1):1–15.

Article  Google Scholar 

13.

Cattuzzo MT, Dos Santos HR, Ré AH, de Oliveira IS, Melo BM, de Sousa MM, et al. Motor competence and health related physical fitness in youth: a systematic review. J Sci Med Sport. 2016;19(2):123–9. https://doi.org/10.1016/j.jsams.2014.12.004.

Article  PubMed  Google Scholar 

14.

Dimitri P. The impact of childhood obesity on skeletal health and development. J Obes Metab Syndr. 2019;28(1):4–17. https://doi.org/10.7570/jomes.2019.28.1.4.

Article  PubMed  PubMed Central  Google Scholar 

15.

Molina-Garcia P, Migueles JH, Cadenas-Sanchez C, Esteban-Cornejo I, Mora-Gonzalez J, Rodriguez-Ayllon M, et al. A systematic review on biomechanical characteristics of walking in children and adolescents with overweight/obesity: possible implications for the development of musculoskeletal disorders. Obes Rev. 2019;20(7):1033–44.

Article  Google Scholar 

16.

• Molina-Garcia P, Miranda-Aparicio D, Ubago-Guisado E, Alvarez-Bueno C, Vanrenterghem J, Ortega FB. The impact of childhood obesity on the body posture: a systematic review and meta-analysis. Phys Ther. 2021. Consisted evidence of postural changes observed including rounded shoulders, lumber hyperlordosis, genu valgum and flat foot. Meta-analysis revealed risk ratios of 1.41 to 5.92 for the aforementioned deviations and an overall altered posture RR of 1.68. Increased risk of postural change is important regarding the development of musculoskeletal pain or gait deviation and subsquent impact on movement and physical activity level.

17.

Sioen I, Lust E, De Henauw S, Moreno LA, Jiménez-Pavón D. Associations between body composition and bone health in children and adolescents: a systematic review. Calcif Tissue Int. 2016;99(6):557–77. https://doi.org/10.1007/s00223-016-0183-x.

CAS  Article  PubMed  Google Scholar 

18.

Slotte S, Sääkslahti A, Kukkonen-Harjula K, Rintala P. Fundamental movement skills and weight status in children: a systematic review. Baltic j health phys activity. 2017;9.

19.

Rodrigues de Lima T, Custódio Martins P, Henrique Guerra P, Augusto Santos Silva D. Muscular fitness and cardiovascular risk factors in children and adolescents: a systematic review. J strength conditioning res. 2020;34(8):2394–406.https://doi.org/10.1519/jsc.0000000000002840.

20.

• Tsiros MD, Brinsley J, Mackintosh S, Thewlis D. Relationships between adiposity and postural control in girls during balance tasks of varying difficulty. Obes Res Clin Pract. 2019;13(4):358–64. https://doi.org/10.1016/j.orcp.2019.06.003. Girls with greater adiposity showed greater difficulty with high level postrual control tasks which should be considered and specifically addressed in treatment so as to reduce the liklihood of falls and injury during sport or physical education.

Article  PubMed  Google Scholar 

21.

O’Malley G, Keating R, Elmes M, Killeen S, Sheridan N, Murphy S, et al. Standing balance and health-related quality of life in children who are obese. Appetite. 2015;89:309.

Google Scholar 

22.

Barnett LM, van Beurden E, Morgan PJ, Brooks LO, Beard JR. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health. 2009;44(3):252–9. https://doi.org/10.1016/j.jadohealth.2008.07.004.

Article  PubMed  Google Scholar 

23.

WHO. International classification of functioning, disability and health: Short version. Geneva: WHO press; 2001.

24.

Tsiros MD, Buckley JD, Howe PRC, Olds T, Walkley J, Taylor L, et al. Day-to-day physical functioning and disability in obese 10–13 year olds. Pediatr Obes. 2013;8(8):31–41. https://doi.org/10.1111/j.2047-6310.2012.00083.x.

CAS  Article  PubMed  Google Scholar 

25.

Hong I, Coker-Bolt P, Anderson KR, Lee D, Velozo CA. Relationship between physical activity and overweight and obesity in children: findings from the 2012 National Health and Nutrition Examination Survey National Youth Fitness Survey. Am J Occup Ther. 2016;70(5):7005180060p1–8. https://doi.org/10.5014/ajot.2016.021212.

26.

Merder-Coskun D, Uzuner A, Kenis-Coskun O, Celenlioglu AE, Akman M, Karadag-Saygi E. Relationship between obesity and musculoskeletal system findings among children and adolescents. Turk J Phys Med Rehabil. 2017;63(3):207–14. https://doi.org/10.5606/tftrd.2017.422.

Article  PubMed  PubMed Central  Google Scholar 

27.

Khammassi M, Miguet M, Julian V, Cardenoux C, Boirie Y, Duclos M, et al. Psycho-physiological responses to a 4-month high-intensity interval training-centered multidisciplinary weight-loss intervention in adolescents with obesity. J Obes Metab Syndr. 2020;29(4):292–302. https://doi.org/10.7570/jomes20074.

Article  PubMed  PubMed Central  Google Scholar 

28.

Elmesmari R, Martin A, Reilly JJ, Paton JY. Comparison of accelerometer measured levels of physical activity and sedentary time between obese and non-obese children and adolescents: a systematic review. BMC Pediatr. 2018;18(1):106. https://doi.org/10.1186/s12887-018-1031-0.

Article  PubMed  PubMed Central  Google Scholar 

29.

•• Jago R, Salway R, Emm-Collison L, Sebire SJ, Thompson JL, Lawlor DA. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: a longitudinal study. International journal of obesity (2005). 2020;44(1):104–13. https://doi.org/10.1038/s41366-019-0459-0. Objectively measured moderate-vigoous activity is similar at age 6 bewteen those children who are lean versus those who have overweight/obesity however over time, differences in activity levels emerge. This suggests that as children with obesity are developing specific interventions may be required to support them to retain activity levels.

30.

Kebbe M, Damanhoury S, Browne N, Dyson MP, McHugh TF, Ball GDC. Barriers to and enablers of healthy lifestyle behaviours in adolescents with obesity: a scoping review and stakeholder consultation. Obes Rev. 2017;18(12):1439–53. https://doi.org/10.1111/obr.12602.

CAS  Article  PubMed  Google Scholar 

31.

Toomey CM, Whittaker JL, Richmond SA, Owoeye OB, Patton DA, Emery CA. Adiposity as a risk factor for sport injury in youth: a systematic review. Clin J Sport Med. 2021. https://doi.org/10.1097/JSM.0000000000000927.

Article  PubMed  Google Scholar 

32.

Kim SJ, Ahn J, Kim HK, Kim JH. Obese children experience more extremity fractures than nonobese children and are significantly more likely to die from traumatic injuries. Acta Paediatr. 2016;105(10):1152–7.

Article  Google Scholar 

33.

De Meester A, Stodden D, Goodway J, True L, Brian A, Ferkel R, et al. Identifying a motor proficiency barrier for meeting physical activity guidelines in children. J Sci Med Sport. 2018;21(1):58–62. https://doi.org/10.1016/j.jsams.2017.05.007.

Article  PubMed  Google Scholar 

34.

Utesch T, Dreiskamper D, Naul R, Geukes K. Understanding physical (in-) activity, overweight, and obesity in childhood: eeffects of congruence between physical self-concept and motor competence. Sci Rep. 2018;8(1):5908. https://doi.org/10.1038/s41598-018-24139-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

35.

Valerio G, Gallarato V, D’Amico O, Sticco M, Tortorelli P, Zito E, et al. Perceived difficulty with physical tasks, lifestyle, and physical performance in obese children. Biomed Res Int. 2014;2014: 735764. https://doi.org/10.1155/2014/735764.

Article  PubMed  PubMed Central  Google Scholar 

36.

Rodrigues LP, Stodden DF, Lopes VP. Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school. J Sci Med Sport. 2016;19(1):87–92. https://doi.org/10.1016/j.jsams.2015.01.002.

Article  PubMed  Google Scholar 

37.

Khammassi M, Miguet M, O’Malley G, Fillon A, Masurier J, Damaso AR, et al. Health-related quality of life and perceived health status of adolescents with obesity are improved by a 10-month multidisciplinary intervention. Physiol Behav. 2019;210: 112549. https://doi.org/10.1016/j.physbeh.2019.05.010.

CAS  Article  PubMed  Google Scholar 

38.

WHO. Report of the Commission on Ending Childhood Obesity. Geneva. 2017. https://apps.who.int/iris/bitstream/handle/10665/204176/9789241510066_eng.pdf?sequence=1. Accessed August 2 2018.

39.

Han A, Fu A, Cobley S, Sanders RH. Effectiveness of exercise intervention on improving fundamental movement skills and motor coordination in overweight/obese children and adolescents: a systematic review. J Sci Med Sport. 2018;21(1):89–102. https://doi.org/10.1016/j.jsams.2017.07.001.

Article  PubMed  Google Scholar 

40.

•• García-Hermoso A, Ramírez-Vélez R, Saavedra JM. Exercise, health outcomes, and pædiatric obesity: a systematic review of meta-analyses. J Sci Med Sport. 2019;22(1):76–84. https://doi.org/10.1016/j.jsams.2018.07.006. From 18 meta-analyses there is evidence that exercise interventions improve body composition, cardiometabolic parameters and cardiorepiratory fitness in children with obesity. Aerobic interventions improve cardiometabolic and vascular parameters if they are of 4-12 weeks duration or involve a total exercise time of at least 1500 mins or sessions lasting at least 60 mins.

Article  PubMed  Google Scholar 

41.

Nooijen CF, Galanti MR, Engstrom K, Moller J, Forsell Y. Effectiveness of interventions on physical activity in overweight or obese children: a systematic review and meta-analysis including studies with objectively measured outcomes. Obes Rev. 2017;18(2):195–213. https://doi.org/10.1111/obr.12487.

CAS  Article  PubMed  Google Scholar 

42.

Morales PF, Sanchez-Lopez M, Moya-Martinez P, Garcia-Prieto JC, Martinez-Andres M, Garcia NL, et al. Health-related quality of life, obesity, and fitness in schoolchildren: the Cuenca study. Qual Life Res. 2013;22(7):1515–23. https://doi.org/10.1007/s11136-012-0282-8.

Article  PubMed  Google Scholar 

43.

Tsiros MD, Buckley JD, Olds T, Howe PRC, Hills AP, Walkley J, et al. Impaired physical function associated with childhood obesity: how should we intervene? Child Obes. 2016;12(2):126–34. https://doi.org/10.1089/chi.2015.0123.

Article  PubMed  Google Scholar 

44.

Briggs MS, Bout-Tabaku S, Buell J, White S, Rosenstein PF, Schmitt LC. A preliminary evaluation of the associations among functional performance tasks and quality of life in obese and healthy weight youth. J Sports Sci. 2019;37(1):20–8. https://doi.org/10.1080/02640414.2018.1479947.

Article  PubMed  Google Scholar 

45.

Perez-Sousa MA, Olivares PR, Escobar-Alvarez JA, Parraca JA, Gusi N. Fitness as mediator between weight status and dimensions of health-related quality of life. Health Qual Life Outcomes. 2018;16(1):155. https://doi.org/10.1186/s12955-018-0981-0.

Article 

留言 (0)

沒有登入
gif