Prolonged Peripheral Immunosuppressive Responses as Consequences of Random Amphetamine Treatment, Amphetamine Withdrawal and Subsequent Amphetamine Challenges in Rats

Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207:329–331

PubMed  CAS  Google Scholar 

Assis MA, Collino C, Figuerola ML, Sotomayor C, Cancela LM (2006) Amphetamine triggers an increase in met-enkephalin simultaneously in brain areas and immune cells. J Neuroimmunol 178:62–75

PubMed  CAS  Google Scholar 

Assis MA, Hansen C, Lux-Lantos V, Cancela LM (2009) Sensitization to amphetamine occurs simultaneously at immune level and in met-enkephalin of the nucleus accumbens and spleen: An involved NMDA glutamatergic mechanism. Brain Behav Immun 23:464–473

PubMed  CAS  Google Scholar 

Barr AM, Hofmann CE, Weinberg J, Phillips AG (2002) Exposure to repeated, intermittent d-amphetamine induces sensitization of HPA axis to a subsequent stressor. Neuropsychopharmacology 26:286–293

PubMed  CAS  Google Scholar 

Barr JL, Renner K, Forster GL (2010) Withdrawal from chronic amphetamine produces persistent anxiety-like behavior but temporally-limited reductions in monoamines and neurogenesis in the adult rat dentate gyrus. Neuropharmacology 59:395–405

PubMed  PubMed Central  CAS  Google Scholar 

Basso AM, Gioino G, Molina VA, Cancela LM (1999) Chronic amphetamine facilitates immunosuppression in response to a novel aversive stimulus: Reversal by haloperidol pretreatment. Pharmacol Biochem Behav 62:307–314

PubMed  CAS  Google Scholar 

Boyle NT, Connor TJ (2007) MDMA (“Ecstasy”) suppresses the innate IFN-γ response in vivo: A critical role for the anti-inflammatory cytokine IL-10. Eur J Pharmacol 572:228–238

PubMed  CAS  Google Scholar 

Bowyer JF (2014) Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature 1:172–182

Google Scholar 

Bowyer JF, Tranter KM, Hanig JP, Crabtree NM, Schleimer RP, George NI (2015) Evaluating the stability of RNA-Seq transcriptome profiles and drug-induced immune-related expression changes in whole blood. PLoS One 10:e0133315

PubMed  PubMed Central  Google Scholar 

Camacho L, Silva CS, Hanig JP, Schleimer RP, George NI, Bowyer JF (2019) Identification of whole blood mRNA and microRNA biomarkers of tissue damage and immune function resulting from amphetamine exposure or heat stroke in adult rats. PLoS One 14(2):e0210273

PubMed  PubMed Central  CAS  Google Scholar 

Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen J, Cao W, Xu Y (2010). Cocaine- and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. https://doi.org/10.1016/j.bbi.2010.09.017

Article  Google Scholar 

Connor TJ (2004) Methylenedioxymethamphetamine (MDMA, ’Ecstasy’): A stressor on the immune system. Immunology 111:357–367

PubMed  PubMed Central  CAS  Google Scholar 

Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1995) Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms J Immunol 154:5511–5527

PubMed  CAS  Google Scholar 

Dhabhar FS, Malarkey WB, Neri E, McEwen BS (2012) Stress-induced redistribution of immune cells-from barracks to boulevards to battlefields: A tale of three hormones. Curt Richter Award Winner Psychoneuroendocrinology 37:1345–1368

CAS  Google Scholar 

Dyer KR, Cruickshank CC (2007) Depression and other psychological health problems among methamphetamine dependent patients in treatment: Implications for assessment and treatment outcome. Australian Psycholog 40:96–108

Google Scholar 

Elenkov IJ, Chrousos GP (1999) Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory Cytokines and Susceptibility to Disease. Trends Endocrinol Metab 10:359–368

PubMed  CAS  Google Scholar 

Freire-Garabal M, Balboa JL, Nunez MJ, Castano MT, Llovo JB, Fernandez-Rial JC, Belmonte A (1991) Effects of amphetamine on T-cell immune response in mice. Life Sci 49:107–112

Google Scholar 

Freire-Garabal M, Nunez MJ, Balboa JL, Fernandez-Rial JC, Belmonte A (1992) Effects of amphetamine on the activity of phagocytosis in mice. Life Sci 51:PL145-148

PubMed  CAS  Google Scholar 

Freire-Garabal M, Núñez JM, Balboa J, Rodríguez-Cobo A, López-Paz JM, Rey-Méndez M, Suárez-Quintanilla JA, Millán JC, Mayán JM, (1999) Effects of Amphetamine on Development of Oral Candidiasis in Rats. Clin Diagn Lab Immunol 6:530-533

Glac W, Borman A, Badtke P, Stojek W, Orlikowska A, Tokarski J (2006) Amphetamine enhances natural killer cytotoxic activity via beta-adrenergic mechanism. J Physiol Pharmacol 57(suppl. 11):125–132

PubMed  Google Scholar 

Gomez-Roman A, Ortega-Sanchez JA, Rorllant D, Gagliano H, Belda X, Delgado-Morales R, Martin-Blasco I, Armario A (2016) The neuroendocrine response to stress under the effect of drugs: Negative synergy between amphetamine and stressors. Psychoneuroendocrinology 63:94–101

PubMed  CAS  Google Scholar 

Goodman A, Gilman TW, Rall AS, Taylor N, Taylor P (1990) Goodman and Gilman’s the pharmacological basis of therapeutics. Cocaine, amphetamine and related psychostimulants, 8th edn. Pergamon Press, New York, pp 539–545

Google Scholar 

Grembecka B, Glac W, Listowska M, Jerzemowska G, Plucińska K, Majkutewicz I, Badtke P, Wrona D (2020) Subthalamic deep brain stimulation affects plasma corticosterone concentration and peripheral immunity changes in rat model of Parkinson’s disease. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-020-09934-7

Article  PubMed  PubMed Central  Google Scholar 

House RV, Thomas PT, Bhargava HN (1994) Comparison of immune functional parameters following in vitro exposure to natural and synthetic amphetamines. Immunopharmacol Immunotoxicol 16:1–21

PubMed  CAS  Google Scholar 

House RV, Thomas PT, Bhargava HN (1995) Selective modulation of immune function resulting from in vitro exposure to methylenedioxymethamphetamine (Ecstasy). Toxicology 6:59–69

Google Scholar 

Harms R, Morsey B, Boyer CW, Fox HS, Sarvetnick N (2012) Methamphetamine administration targets multiple immune subsets and induces phenotypic alterations suggestive of immunosuppression. PLoS One 7:e49897

PubMed  PubMed Central  CAS  Google Scholar 

Huckans M, Wilhelm CJ, Phillips TJ, Huang ET, Hudson R, Loftis JM (2017) Parallel effects of methamphetamine on anxiety and CCL3 in humans and a genetic mouse model of high methamphetamine intake. Neuropsychobiology 75:169–177

PubMed  CAS  Google Scholar 

Kolokotroni KZ, Rodgers RJ, Harrison AA (2012) Effects of chronic nicotine, nicotine withdrawal and subsequent nicotine challenges on behavioural inhibition in rats. Psychopharmacology 219:453–468

PubMed  CAS  Google Scholar 

Kohno M, Link J, Dennis LE, McHready H, Huckans M, Hoffman WF, Loftis JM (2019) Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 179:34–42

PubMed  PubMed Central  CAS  Google Scholar 

Kubera M, Filip M, Basta-Kaim A, Nowak E, Budziszewska B, Tetich M, Holan V, Korzeniak B, Przegalinski E (2002) The effect of amphetamine sensitization on mouse immunoreactivity. J Physiol Pharmacol 53:233–242

PubMed  CAS  Google Scholar 

Lang K, Drell TL, Niggemann B, Zänker KS, Entschladen F (2003) Neurotransmitters regulate the migration and cytotoxicity in natural killer cells. Immunol Lett 90:165–172

PubMed  CAS  Google Scholar 

Levine AJ, Reynolds S, Cox C, Miller EN, Sinsheimer JS, Becker JT, Martin E, Sacktor N (2014) Neuropsychology working group multicenter AIDS cohort study. The longitudinal and interactive effects of HIV status, stimulant use and host genotype upon neurocognitive functioning. J Neurovirol 20:243–257

PubMed  PubMed Central  Google Scholar 

Ligeiro-Oliveira AP, Fialho de Araujo AM, Lazzarini R, Silva ZL, De Nucci G, Muscara MN, Tavares de Lima W, Palermo-Neto, (2004) J Effects of amphetamine on immune-mediated lung inflammatory response in rats. NeuroImmunoModulation. https://doi.org/10.1159/000076767

Article  PubMed  Google Scholar 

Listowska M, Glac W, Grembecka B, Grzybowska M, Wrona D (2015) Change in blood CD4+T and CD8+T lymphocytes in stressed rats pretreated chronically with desipramine are more pronounced after chronic open field stress challenge. J Neuroimmunol 282:54–62

PubMed  CAS  Google Scholar 

Llorente-García E, Abreu-González P, González-Hernández MC (2009) Hematological, immunological and neurochemical effects of chronic amphetamine treatment in male rats. J Physiol Biochem 65:61–69

PubMed  Google Scholar 

Mata MM, Napier TC, Graves SM, Mahmood F, Raeisi S, Baum LL (2015) Methamphetamine decreases CD4 T cell frequency and alters-pro-inflammatory cytokine production in a model of drug abuse. Eur J Pharmacol 752:26–33

PubMed  PubMed Central  CAS  Google Scholar 

Meredith CW, Jaffe C, Ang-Lee K, Saxon AJ (2005) Implications of chronic methamphetamine use: A literature review. Harv Rev Psychiatry 13:177–184

Google Scholar 

Nunez-Iglesias MJ, Castro-Bolano C, Losada C, Pereiro-Raposo MD, Riveiro P, Sanchez-Sebio P, Mayan-Santos JM, Rey-Mendez M, Freire-Garabal M (1996) Effects of amphetamine on cell mediated immune response in mice. Life Sci 58:PL29-33

CAS  Google Scholar 

O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

PubMed  Google Scholar 

Pacifici R, Zuccaro P, Farre M, Pichini S, Di Carlo S, Roset PN, Ortuno J, Segura J, de la Torre R (1999) Immunomodulating properties of MDMA alone and in combination with alcohol: A pilot study. Life Sci 65:309–316

Google Scholar 

Pacifici R, Zuccaro P, Farre M, Pichini S, Di Carlo S, Roset PN, Ortuno J, Pujadas M, Bacosi A, Menoyo E, Segura J, de la Torre R (2001) Effects of repeated doses of MDMA (“ecstasy”) on cell-mediated immune response in humans. Life Sci 69:2931–2941

PubMed  CAS  Google Scholar 

Pahwa S, Read JS, Yin W, Mathews Y, Shearer W, Diaz C et al (2008) CD4+/CD8+ T cell ratio for diagnosis of HIV infection in infants: Women and infants transmission study. Pediatrics 122:331–339

PubMed  Google Scholar 

Papageorgiou M, Raza A, Fraser S, Nurgali K, Apostolopoulos V (2019) Methamphetamine and its immune-modulating effects Maturitas 121:13–21

PubMed  CAS  Google Scholar 

Pichler R, Sfetsos K, Gutenbrunner S, Berg J, Aubuck J (2009) Lymphocyte imbalance in vitiligo patients indicated by elevated CD4+/CD8+ T-cell ratio. Wien Med Wochenschr 159:337–341

PubMed  Google Scholar 

Podlacha M, Glac W, Listowska M, Grembecka B, Majkutewicz I, Myślińska D, Plucińska K, Jerzemowska G, Grzybowska M, Wrona D (2016) Medial septal NMDA glutamate receptors are involved in modulation of blood natural killer cell activity in rats. J Neuroimmune Pharmacol 11:121–132

PubMed  Google Scholar 

Robinson TE, Behavioral sensitization, (1984) characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology 84:466–475

PubMed  CAS  Google Scholar 

Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198

CAS 

留言 (0)

沒有登入
gif