Glutamine promotes the generation of B10+ cells via the mTOR/GSK3 pathway

Alterations in cell metabolism can shift the differentiation of immune cells towards a regulatory or inflammatory phenotype, thus opening up new therapeutic opportunities for immune-related diseases. Indeed, growing knowledge on T cell metabolism has revealed differences in the metabolic programs of suppressive regulatory T cells (Tregs) as compared to inflammatory Th1 and Th17 cells. In addition to Tregs, IL-10-producing regulatory B cells are crucial for maintaining tolerance, inhibiting inflammation and autoimmunity. Yet, the metabolic networks regulating diverse B lymphocyte responses are not well known. Here, we show that glutaminase blockade decreased downstream mTOR activation and attenuated IL-10 secretion. Direct suppression of mTOR activity by rapamycin selectively impaired IL-10 production by B cells whereas secretion was restored upon GSK3 inhibition. Mechanistically, we found mTORC1 activation leads to GSK3 inhibition, identifying a key signalling pathway regulating IL-10 secretion by B lymphocytes. Thus, our results identify glutaminolysis and the mTOR/GSK3 signalling axis, as critical regulators of the generation of IL-10 producing B cells with regulatory functions.

This article is protected by copyright. All rights reserved

留言 (0)

沒有登入
gif