MicroRNA-17-5p, a novel endothelial cell modulator, controls vascular re-endothelialization and neointimal lesion formation

1. Zhou, Y, Little, PJ, Ta, HT, et al. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204: 107404.
Google Scholar | Crossref | Medline2. Rahmani, M, Cruz, RP, Granville, DJ, et al. Allograft vasculopathy versus atherosclerosis. Circ Res 2006; 99: 801–815.
Google Scholar | Crossref | Medline | ISI3. TabasGarcia-Cardena, I, García-Cardeña, G, Owens, GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol 2015; 209: 13–22.
Google Scholar | Crossref | Medline4. Simionescu, M . Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 2007; 27: 266–274.
Google Scholar | Crossref | Medline5. Hopkins, PN . Molecular biology of atherosclerosis. Physiol Rev 2013; 93: 1317–1542.
Google Scholar | Crossref | Medline | ISI6. Mendell, JT, Olson, EN. MicroRNAs in stress signaling and human disease. Cell 2012; 148: 1172–1187.
Google Scholar | Crossref | Medline | ISI7. Ambros, V . MicroRNA pathways in flies and worms. Cell 2003; 113: 673–676.
Google Scholar | Crossref | Medline | ISI8. Farh, KKH, Grimson, A, Jan, C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005; 310: 1817–1821.
Google Scholar | Crossref | Medline | ISI9. Jamaluddin, MS, Weakley, SM, Zhang, L, et al. miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 2011; 11(1): 79–89.
Google Scholar | Crossref | Medline | ISI10. Pickering, MT, Stadler, BM, Kowalik, TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 2009; 28: 140–145.
Google Scholar | Crossref | Medline | ISI11. Bonauer, A, Carmona, G, Iwasaki, M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324: 1710–1713.
Google Scholar | Crossref | Medline | ISI12. Doebele, C, Bonauer, A, Fischer, A, et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 2010; 115: 4944–4950.
Google Scholar | Crossref | Medline | ISI13. Ross, JS, Stagliano, NE, Donovan, MJ, et al. Atherosclerosis: a cancer of the blood vessels? Am J Clin Pathol 2001; 116 Suppl(Suppl): S97–107.
Google Scholar | Medline14. Shan, SW, Fang, L, Shatseva, T, et al. Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J Cell Sci 2013; 126: 1517–30.
Google Scholar | Crossref | Medline | ISI15. Yang, X, Du, WW, Li, H, et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res 2013; 41: 9688–9704.
Google Scholar | Crossref | Medline | ISI16. Chen, J, Jiang, H, Yang, J, et al. Down-regulation of CREB-binding protein expression blocks thrombin-mediated endothelial activation by inhibiting acetylation of NF-κB. Int J Cardiol 2012; 154: 147–152.
Google Scholar | Crossref | Medline17. Chen, J, Zhang, J, Xu, L, et al. Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor. Atherosclerosis 2012; 224: 332–339.
Google Scholar | Crossref | Medline18. Byeon, SH, Lee, SC, Choi, SH, et al. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Opthalmol Vis Sci 2010; 51: 1190–7.
Google Scholar | Crossref | Medline | ISI19. Li, YQ, Wang, JY, Qian, ZQ, et al. Osthole inhibits intimal hyperplasia by regulating the NF-κB and TGF-β1/Smad2 signalling pathways in the rat carotid artery after balloon injury. Eur J Pharmacol 2017; 811: 232–239.
Google Scholar | Crossref | Medline20. Varenne, O, Pislaru, S, Gillijns, H, et al. Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 1998; 98: 919–926.
Google Scholar | Crossref | Medline | ISI21. Sinnaeve, P, Chiche, JD, Nong, Z, et al. Soluble guanylate cyclase α 1 and β 1 gene transfer increases NO responsiveness and reduces neointima formation after balloon injury in rats via antiproliferative and antimigratory effects. Circ Res 2001; 88: 103–109.
Google Scholar | Crossref | Medline22. Braile, M, Marcella, S, Cristinziano, L, et al. VEGF-A in cardiomyocytes and heart diseases. Int J Mol Sci 2020; 21(15): 5294.
Google Scholar | Crossref23. Jin, HY, Oda, H, Lai, M, et al. MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 2013; 32: 2377–2391.
Google Scholar | Crossref | Medline24. Kabbout, M, Dakhlallah, D, Sharma, S, et al. MicroRNA 17-92 cluster mediates ETS1 and ETS2-dependent RAS-oncogenic transformation. PLos One 2014; 9: e100693.
Google Scholar | Crossref | Medline25. Fang, L, Li, H, Wang, L, et al. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget 2014; 5: 2974–2987.
Google Scholar | Crossref | Medline26. Kim, K, Chadalapaka, G, Pathi, SS, et al. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 2012; 11: 1852–1862.
Google Scholar | Crossref | Medline27. Yu, J., Ohuchida, K., Mizumoto, K., et al. MicroRNAmiR-17-5pis overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther 2010; 10: 748–757.
Google Scholar | Crossref | Medline28. Braile, M, Marcella, S, Cristinziano, L, et al. VEGF-A in cardiomyocytes and heart diseases. Int J Mol Sci 2020; 21(15): 5294.
Google Scholar | Crossref29. Zhao, N, Zhang, J. Role of alternative splicing of VEGF-A in the development of atherosclerosis. Aging 2018; 10: 2695–2708.
Google Scholar | Crossref | Medline30. Luttun, A, Tjwa, M, Moons, L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002; 8: 831–840.
Google Scholar | Crossref | Medline | ISI31. Pennock, S, Kim, LA, Kazlauskas, A. Vascular endothelial cell growth factor A acts via platelet-derived growth factor receptor α to promote viability of cells enduring hypoxia. Mol Cell Biol 2016; 36: 2314–2327.
Google Scholar | Crossref | Medline32. Dulak, J, Schwarzacher, SP, Zwick, RH, et al. Effects of local gene transfer of VEGF on neointima formation after balloon injury in hypercholesterolemic rabbits. Vasc Med 2005; 10: 285–291.
Google Scholar | SAGE Journals | ISI33. Bhardwaj, S, Roy, H, Heikura, T, et al. VEGF-A, VEGF-D and VEGF-DDeltaNDeltaC induced intimal hyperplasia in carotid arteries. Eur J Clin Invest 2005; 35: 669–676.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif