Cytoplasmic incompatibility in hybrid zones: infection dynamics and resistance evolution

Cytoplasmic incompatibility is an endosymbiont-induced mating incompatibility common in arthropods. Unidirectional cytoplasmic incompatibility impairs crosses between infected males and uninfected females, whereas bidirectional cytoplasmic incompatibility occurs when two host lineages are infected with reciprocally in compatible endosymbionts. Bidirectional cytoplasmic incompatibility is unstable in unstructured populations, but may be stable in hybrid zones. Stable coexistence of incompatible host lineages should generate frequent incompatible crosses. Therefore, hosts are expected to be under selection to resist their endosymbionts. Here, we for mulate a mathematical model of hybrid zones where two bidirectionally incompatible host lineages meet. We expand this model to consider the invasion of a hypothetical resistance allele. To corroborate our mathematical predictions, we test each prediction with stochastic, individual-based simulations. Our models suggest that hybrid zones may sustain stable coinfections of bidirectionally incompatible endosymbiont strains. Over a range of conditions, host are under selection for resistance against cytoplasmic incompatibility. Under asymetric migration, a resistance allele can facilitate infection turnover and subsequently either persist or become lost. The predictions we present may inform our understanding of the cophylogenetic relationship between the endosym

biont Wolbachia and its hosts.

留言 (0)

沒有登入
gif