Resting-state Functional Connectivity After Occipital Stroke

1. Gilhotra, JS, Mitchell, P, Healey, PR, Cumming, RG, Currie, J. Homonymous visual field defects and stroke in an older population. Stroke. 2002;33(10):2417-2420. DOI: 10.1161/01.str.0000037647.10414.d2.
Google Scholar | Crossref | Medline2. Brandt, T, Steinke, W, Thie, A, Pessin, MS, Caplan, LR. Posterior cerebral artery territory infarcts: clinical features, infarct topography, causes and outcome. Multicenter results and a review of the literature. Cerebrovasc Dis. 2000;10(3):170-182. DOI: 10.1159/000016053.
Google Scholar | Crossref | Medline3. Gall, C, Franke, GH, Sabel, BA. Vision-related quality of life in first stroke patients with homonymous visual field defects. Health Qual Life Outcome. 2010;8:33. DOI: 10.1186/1477-7525-8-33.
Google Scholar | Crossref | Medline4. Zhang, X, Kedar, S, Lynn, MJ, Newman, NJ, Biousse, V. Natural history of homonymous hemianopia. Neurology. 2006;66(6):901-905. DOI: 10.1212/01.wnl.0000203338.54323.22.
Google Scholar | Crossref | Medline5. Tiel, K, Kolmel, HW. Patterns of recovery from homonymous hemianopia subsequent to infarction in the distribution of the posterior cerebral-artery. Neuro Ophthalmol. 1991;11(1):33-39. DOI: 10.3109/01658109109009640.
Google Scholar | Crossref6. Murphy, TH, Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872. DOI: 10.1038/nrn2735.
Google Scholar | Crossref | Medline7. Biswal, B, Zerrin Yetkin, F, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537-541. DOI: 10.1002/mrm.1910340409.
Google Scholar | Crossref | Medline | ISI8. Friston, KJ, Frith, CD, Liddle, PF, Frackowiak, RSJ. Functional connectivity: The principal-component analysis of large (PET) data sets. J Cerebr Blood Flow Metabol. 1993;13(1):5-14. DOI: 10.1038/jcbfm.1993.4.
Google Scholar | SAGE Journals | ISI9. Baldassarre, A, Ramsey, L, Hacker, CL, et al. Large-scale changes in network interactions as a physiological signature of spatial neglect. Brain. 2014;137(Pt 12):3267-3283. DOI: 10.1093/brain/awu297.
Google Scholar | Crossref | Medline10. Carter, AR, Astafiev, SV, Lang, CE, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365-375. DOI: 10.1002/ana.21905.
Google Scholar | Crossref | Medline | ISI11. Park, CH, Chang, WH, Ohn, SH, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42(5):1357-1362. DOI: 10.1161/STROKEAHA.110.596155.
Google Scholar | Crossref | Medline12. He, BJ, Snyder, AZ, Vincent, JL, Epstein, A, Shulman, GL, Corbetta, M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron. 2007;53(6):905-918. DOI: 10.1016/j.neuron.2007.02.013.
Google Scholar | Crossref | Medline | ISI13. James, GA, Lu, Z-L, VanMeter, JW, Sathian, K, Hu, XP, Butler, AJ. Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top Stroke Rehabil 2009;16(4):270-281. doi:10.1310/tsr1604-270.
Google Scholar | Crossref | Medline14. Urbin, MA, Hong, X, Lang, CE, Carter, AR. Resting-state functional connectivity and its association with multiple domains of upper-extremity function in chronic stroke. Neurorehabil Neural Repair 2014;28(8):761-769. doi:10.1177/1545968314522349.
Google Scholar | SAGE Journals | ISI15. Kim, YH, Cho, AH, Kim, D, et al. Early functional connectivity predicts recovery from visual field defects after stroke. J Stroke. 2019;21(2):207-216. DOI: 10.5853/jos.2018.02999.
Google Scholar | Crossref | Medline16. Craddock, RC, Tungaraza, RL, Milham, MP. Connectomics and new approaches for analyzing human brain functional connectivity. GigaScience. 2015;4:13. DOI: 10.1186/s13742-015-0045-x.
Google Scholar | Crossref | Medline17. Pollock, A, Hazelton, C, Rowe, FJ, et al. Interventions for visual field defects in people with stroke. Cochrane Database Syst Rev. 2019;5:CD008388. DOI: 10.1002/14651858.CD008388.pub3.
Google Scholar | Crossref | Medline18. Gall, C, Schmidt, S, Schittkowski, MP, et al. Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial. PLoS One. 2016;11(6):e0156134. DOI: 10.1371/journal.pone.0156134.
Google Scholar | Crossref | Medline19. Bola, M, Gall, C, Moewes, C, Fedorov, A, Hinrichs, H, Sabel, BA. Brain functional connectivity network breakdown and restoration in blindness. Neurology. 2014;83(6):542-551. DOI: 10.1212/WNL.0000000000000672.
Google Scholar | Crossref | Medline20. Vosskuhl, J, Strüber, D, Herrmann, CS. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci. 2018;12:211. DOI: 10.3389/fnhum.2018.00211.
Google Scholar | Crossref | Medline21. Foik, AT, Kublik, E, Sergeeva, EG, et al. Retinal origin of electrically evoked potentials in response to transcorneal alternating current stimulation in the rat. Invest Ophthalmol Vis Sci. 2015;56(3):1711-1718. DOI: 10.1167/iovs.14-15617.
Google Scholar | Crossref | Medline22. Schmidt, S, Mante, A, Rönnefarth, M, Fleischmann, R, Gall, C, Brandt, SA. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study. Brain Stimul. 2013;6(1):87-93. DOI: 10.1016/j.brs.2012.03.008.
Google Scholar | Crossref | Medline23. Pietrelli, M, Zanon, M, Làdavas, E, Grasso, PA, Romei, V, Bertini, C. Posterior brain lesions selectively alter alpha oscillatory activity and predict visual performance in hemianopic patients. Cortex. 2019;121:347-361. DOI: 10.1016/j.cortex.2019.09.008.
Google Scholar | Crossref | Medline24. Räty, S, Borrmann, C, Granata, G, et al. Non-invasive electrical brain stimulation for vision restoration after stroke: An exploratory randomized trial (REVIS). Restor Neurol Neurosci. 2021;39(3):221-235. DOI: 10.3233/RNN-211198.
Google Scholar | Crossref | Medline25. Craddock, RC, Milham, MP, LaConte, SM. Predicting intrinsic brain activity. Neuroimage. 2013;82:127-136. DOI: 10.1016/j.neuroimage.2013.05.072.
Google Scholar | Crossref | Medline26. Gall, C, Silvennoinen, K, Granata, G, et al. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke. Contemp Clin Trials. 2015;43:231-236. DOI: 10.1016/j.cct.2015.06.005.
Google Scholar | Crossref | Medline27. Van Essen, DC . Organization of visual areas in macaque and human cerebral cortex. In: Chalupa, LM, Werner, JS, eds The visual neurosciences. Cambridge, MA, USA: MIT Press; 2003:507-521.
Google Scholar28. Wandell, BA, Dumoulin, SO, Brewer, AA. Visual field maps in human cortex. Neuron. 2007;56(2):366-383. DOI: 10.1016/j.neuron.2007.10.012.
Google Scholar | Crossref | Medline | ISI29. Smith, SM, Jenkinson, M, Woolrich, MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208-S219. DOI: 10.1016/j.neuroimage.2004.07.051.
Google Scholar | Crossref | Medline | ISI30. Jenkinson, M, Beckmann, CF, Behrens, TEJ, Woolrich, MW, Smith, SM. FSL. Neuroimage. 2012;62(2):782-790. DOI: 10.1016/j.neuroimage.2011.09.015.
Google Scholar | Crossref | Medline | ISI31. Cox, RW . AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162-173. DOI: 10.1006/cbmr.1996.0014.
Google Scholar | Crossref | Medline32. Yushkevich, PA, Piven, J, Hazlett, HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116-1128. DOI: 10.1016/j.neuroimage.2006.01.015.
Google Scholar | Crossref | Medline | ISI33. Gorgolewski, K, Burns, CD, Madison, C, et al. Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinf. 2011;5:13. DOI: 10.3389/fninf.2011.00013.
Google Scholar | Crossref | Medline34. Reuter, M, Schmansky, NJ, Rosas, HD, Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61(4):1402-1418. DOI: 10.1016/j.neuroimage.2012.02.084.
Google Scholar | Crossref | Medline35. Ciric, R, Wolf, DH, Power, JD, et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage. 2017;154:174-187. DOI: 10.1016/j.neuroimage.2017.03.020.
Google Scholar | Crossref | Medline36. Power, JD, Plitt, M, Laumann, TO, Martin, A. Sources and implications of whole-brain fMRI signals in humans. Neuroimage. 2017;146:609-625. DOI: 10.1016/j.neuroimage.2016.09.038.
Google Scholar | Crossref | Medline37. Power, JD, Barnes, KA, Snyder, AZ, Schlaggar, BL, Petersen, SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59(3):2142-2154. DOI: 10.1016/j.neuroimage.2011.10.018.
Google Scholar | Crossref | Medline | ISI38. Desikan, RS, Ségonne, F, Fischl, B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-980. DOI: 10.1016/j.neuroimage.2006.01.021.
Google Scholar | Crossref | Medline | ISI39. Bullmore, E, Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186-198. DOI: 10.1038/nrn2575.
Google Scholar | Crossref | Medline | ISI40. Rubinov, M, Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003.
Google Scholar | Crossref | Medline | ISI41. Bonacich, P . Factoring and weighting approaches to status scores and clique identification. J Math Sociol. 1972;2(1):113-120. DOI: 10.1080/0022250X.1972.9989806.
Google Scholar | Crossref | ISI42. Krzywinski, M, Schein, J, Birol, İ, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639-1645. DOI: 10.1101/gr.092759.109.
Google Scholar | Crossref | Medline | ISI43. Laird, NM, Ware, JH. Random-effects models for longitudinal data. Biometrics. 1982;38(4):963-974. DOI: 10.2307/2529876.

留言 (0)

沒有登入
gif