Protein Expression in the Gastrocnemius Muscle of a Rodent Shrapnel-Injury Model

1. Manring, MM, Hawk, A, Calhoun, JH, Andersen, RC. Treatment of war wounds: a historical review. Clin Orthop Relat Res. 2009;467(8):2168-2191.
Google Scholar | Crossref | Medline2. Schenck, NL, Kronman, BS. Hoarseness and mass in the neck 30 years after penetrating shrapnel injury. Ann Otol Rhinol Laryngol. 1977;86(2):259.
Google Scholar | SAGE Journals | ISI3. Knox, J, Wilkinson, A. Shrapnel presenting with symptoms 62 years after wounding. BMJ. 1981;283(6285):193.
Google Scholar | Crossref | Medline4. Symonds, RP, Mackay, C, Morley, P. The late effect of grenade fragments. J Roy Army Med Corps. 1985;131(2):68-69.
Google Scholar | Crossref | Medline5. Lindeman, G, McKay, MJ, Taubman, KL, Bilous, AM. Malignant fibrous histiocytoma developing in bone 44 years after shrapnel trauma. Cancer. 1990;66(10):2229-2232.
Google Scholar | Crossref | Medline6. Ligtenstein, DA, Krijnen, JLM, Jansen, BRH, Eulderink, F. Forgotten injury. J Trauma Inj Infect Crit Care. 1994;36(4):580-582.
Google Scholar | Crossref | Medline7. Eylon, S, Mosheiff, R, Liebergall, M, Wolf, E, Brocke, L, Peyser, A. Delayed reaction to shrapnel retained in soft tissue. Injury. 2005;36(2):275-281.
Google Scholar | Crossref | Medline8. Bar, Y, Merimsky, O. Soft-tissue sarcoma following traumatic injury: case report and review of the literature. Frontiers in Oncology. 2017;7:134.
Google Scholar | Crossref | Medline9. Saruwatari, H, Kamiwada, R, Matsushita, S, Hashiguchi, T, Kawai, K, Kanekura, T. Tungsten granuloma attributable to a piece of lawn-mower blade. Clin Exp Dermatol. 2009;34(7):e268-e269.
Google Scholar | Crossref | Medline | ISI10. Osawa, R, Abe, R, Inokuma, D, et al. Chain saw blade granuloma: reaction to a deeply embedded metal fragment. Arch Dermatol. 2006;142(8):1079-1080.
Google Scholar | Crossref | Medline11. Kalinich, JF, Emond, CA, Dalton, TK, et al. Embedded weapons-grade 2tungsten alloy shrapnel rapidly induces metastatic high-grade rhabdomyosarcomas in F344 rats. Environ Health Perspect. 2005;113(6):729-734.
Google Scholar | Crossref | Medline | ISI12. Schuster, BE, Roszell, LE, Murr, LE, et al. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys. Toxicol Appl Pharmacol. 2012;265(1):128-138.
Google Scholar | Crossref | Medline | ISI13. Emond, CA, Vergara, VB, Lombardini, ED, Mog, SR, Kalinich, JF. Induction of rhabdomyosarcoma by embedded military-grade tungsten/nickel/cobalt not by tungsten/nickel/iron in the B6C3F1 mouse. Int J Toxicol. 2015;34(1):44-54.
Google Scholar | SAGE Journals | ISI14. Policy on analysis of metal fragments removed from department of defense personnel (Policy#:07-029, Date: 12/18/2007) https://www.health.mil/Military-Health-Topics/Health-Readiness/Environmental-Exposures?page=2#pagingAnchor [Accessed 30 August 2021]
Google Scholar15. Screening and evaluation protocol for veterans with embedded fragments who served in Iraq and/or Afghanistan Post-September 11, 2001 (April 6, 2017) https://www.va.gov/VHAPublications/ViewPublication.asp?pub_ID=5372 [Accessed 30 August 2021]
Google Scholar16. National Research Council . Guide for the Care and Use of Laboratory Animals. 8th edition. Washington, DC: The National Academies Press; 2011.
Google Scholar17. Castro, CA, Benson, KA, Bogo, V, et al. Establishment of an Animal Model to Evaluate the Biological Effects of Intramuscularly Embedded Depleted Uranium Fragments. Technical Report 96-3. Bethesda, MD, USA: Armed Forces Radiobiology Research Institute; 1996.
Google Scholar18. Hockley, AD, Goldin, JH, Wake, MJ, Iqbal, J. Skull repair in children. Pediatr Neurosurg. 1990;16(4-5):271-275.
Google Scholar | Crossref | Medline | ISI19. Johansson, CB, Hansson, HA, Albrektsson, T. Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium. Biomaterials. 1990;11(4):277-280.
Google Scholar | Crossref | Medline | ISI20. Strecker, E-PK, Hagen, B, Liermann, D, Schneider, B, Wolf, HRD, Wambsganss, J. Iliac and femoropopliteal vascular occlusive disease treated with flexible tantalum stents. CVIR (Cardiovasc Interventional Radiol). 1993;16(3):158-164.
Google Scholar | Crossref | Medline | ISI21. Pellmar, T, Fuciarelli, AF, Ejnik, JW, et al. Distribution of uranium in rats implanted with depleted uranium pellets. Toxicol Sci. 1999;49(1):29-39.
Google Scholar | Crossref | Medline | ISI22. Hahn, FF, Guilmette, RA, Hoover, MD. Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats. Environ Health Perspect. 2002;110(1):51-59.
Google Scholar | Crossref | Medline | ISI23. Percie du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Plos Biol. 2020;18(7):e3000410.
Google Scholar | Crossref | Medline24. Hoffman, JF, Vergara, VB, Kalinich, JF. Brain region- and metal-specific effects of embedded metals in a shrapnel wound model in the rat. Neurotoxicology. 2021;83:116-128.
Google Scholar | Crossref | Medline25. Hoffman, JF, Vergara, VB, Fan, AX, Kalinich, JF. Effect of embedded metal fragments on urinary metal levels and kidney biomarkers in the Sprague-Dawley rat. Toxicology Reports. 2021;8:463-480.
Google Scholar | Crossref | Medline26. American Veterinary Medical Association (AVMA) . AVMA Guidelines on Euthanasia. https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf Accessed August 30, 2021.
Google Scholar27. Wen, Y, Vechetti, IJ, Alimov, AP, et al. Time-course analysis of the effect of embedded metal on skeletal muscle gene expression. Physiol Genom. 2020;52(12):575-587.
Google Scholar | Crossref | Medline28. Kalinich, JF, Vergara, VB, Emond, CA. Urinary and serum metal levels as indicators of embedded tungsten alloy fragments. Mil Med. 2008;173(8):754-758.
Google Scholar | Crossref | Medline | ISI29. Emond, CA, Kalinich, JF. Biokinetics of embedded surrogate radiological dispersal device material. Health Phys. 2012;102(2):124-136.
Google Scholar | Crossref | Medline30. Emond, C, Vergara, V, Lombardini, E, Mog, S, Kalinich, J. The role of the component metals in the toxicity of military-grade tungsten alloy. Toxics. 2015;3:499-514.
Google Scholar | Crossref | Medline31. Vergara, VB, Emond, CA, Emond, CA, Kalinich, JF. Tissue distribution patterns of solubilized metals from internalized tungsten alloy in the F344 rat. AIMS Environmental Science. 2016;3(2):290-304.
Google Scholar | Crossref32. Russ, DW, Grandy, JS. Increased desmin expression in hindlimb muscles of aging rats. Journal of Cachexia, Sarcopenia and Muscle. 2011;2(3):175-180.
Google Scholar | Crossref | Medline33. Chen, X, Li, Y. Role of matrix metalloproteinases in skeletal muscle. Cell Adhes Migrat. 2009;3(4):337-341.
Google Scholar | Crossref | Medline34. Bellayr, I, Holden, K, Mu, X, Pan, H, Li, Y. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior. Int J Clin Exp Pathol. 2013;6(2):124-141.
Google Scholar | Medline35. Zimowska, M, Brzoska, E, Swierczynska, M, Streminska, W, Moraczewski, J. Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int J Dev Biol. 2008;52(2-3):307-314.
Google Scholar | Crossref | Medline36. Yu, T-s., Li, Z, Zhao, R, Zhang, Y, Zhang, Z-h., Guan, D-w. Time-dependent expression of MMP-2 and TIMP-2 after rats skeletal muscle contusion and their application to determine wound age. J Forensic Sci. 2016;61(2):527-533.
Google Scholar | Crossref | Medline37. Bogdan, C . Nitric oxide and the regulation of gene expression. Trends Cell Biol. 2001;11(2):66-75.
Google Scholar | Crossref | Medline38. Kaminski, HJ, Andrade, FH. Nitric oxide: biologic effects on muscle and role in muscle diseases. Neuromuscul Disord : NMD. 2001;11(6-7):517-524.
Google Scholar | Crossref | Medline39. Kobzik, L, Reid, MB, Bredt, DS, Stamler, JS. Nitric oxide in skeletal muscle. Nature. 1994;372(6506):546-548.
Google Scholar | Crossref | Medline40. Anavi, S, Tirosh, O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med. 2020;146:16-35.
Google Scholar | Crossref | Medline41. Toumi, H, F'guyer, S, Best, TM. The role of neutrophils in injury and repair following muscle stretch. J Anat. 2006;208(4):459-470.
Google Scholar | Crossref | Medline42. Tidball, JG . Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345-R353.
Google Scholar | Crossref | Medline | ISI43. Butterfield, TA, Best, TM, Merrick, MA. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train. 2006;41(4):457-465.
Google Scholar | Medline44. Filippin, LI, Moreira, AJ, Marroni, NP, Xavier, RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide : Biology and Chemistry. 2009;21(3-4):157-163.
Google Scholar | Crossref | Medline45. Kalinich, JF, Ramakrishnan, R, McClain, DE, Ramakrishnan, N. 4-hydroxynonenal, an end-product of lipid peroxidation, induces apoptosis in human leukemic T- and B-cell lines. Free Radic Res. 2000;33(4):349-358.
Google Scholar | Crossref | Medline46. Zhang, H, Forman, HJ. 4-Hydroxynonenal-mediated signaling and aging. Free Radic Biol Med. 2017;111:219-225.
Google Scholar | Crossref | Medline47. Csala, M, Kardon, T, Legeza, B, et al. On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852(5):826-838.
Google Scholar | Crossref | Medline | ISI48. Barrera, G, Pizzimenti, S, Daga, M, et al. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants. 2018;7(8):102.
Google Scholar | Crossref49. Knöbel, Y, Glei, M, Osswald, K, Pool-Zobel, BL. Ferric iron increases ROS formation, modulates cell growth and enhances genotoxic damage by 4-hydroxynonenal in human colon tumor cells. Toxicol Vitro. 2006;20(6):793-800.
Google Scholar | Crossref | Medline50. Valko, M, Morris, H, Cronin, M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161-1208.
Google Scholar | Crossref | Medline | ISI51. Valko, M, Jomova, K, Rhodes, CJ, Kuča, K, Musílek, K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1-37.
Google Scholar |

留言 (0)

沒有登入
gif