Rotten to the core: antivirals targeting the HIV-1 capsid core

1.

Global HIV & AIDS statistics—2020 fact sheet. https://www.unaids.org/en/resources/fact-sheet.

2.

Moir S, Chun T-W, Fauci AS. Pathogenic mechanisms of HIV disease. Annu Rev Pathol. 2011;6:223–48.

CAS  PubMed  Google Scholar 

3.

Weiss RA. How does HIV cause AIDS? Science. 1993;260:1273–9.

CAS  PubMed  Google Scholar 

4.

Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Annali dell’Istituto superiore di sanita. 2010;46:5–14.

CAS  PubMed  Google Scholar 

5.

Pornillos O, Ganser-Pornillos BK. HIV-1 virion structure. In: Hope TJ, Stevenson M, Richman D, editors. Encyclopedia of AIDS. New York: Springer; 2014. p. 1–6.

Google Scholar 

6.

Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI. Assembly and analysis of conical models for the HIV-1 core. Science. 1999;283:80–3.

CAS  PubMed  Google Scholar 

7.

Zhuang S, Torbett BE. Interactions of HIV-1 capsid with host factors and their implications for developing novel therapeutics. Viruses. 2021;13:417.

CAS  PubMed  PubMed Central  Google Scholar 

8.

Lingappa JR, Lingappa VR, Reed JC. Addressing antiretroviral drug resistance with host-targeting drugs—first steps towards developing a host-targeting HIV-1 assembly inhibitor. Viruses. 2021;13:451.

CAS  PubMed  PubMed Central  Google Scholar 

9.

Wilbourne M, Zhang P. Visualizing HIV-1 capsid and its interactions with antivirals and host factors. Viruses. 2021;13:246.

CAS  PubMed  PubMed Central  Google Scholar 

10.

Yamashita M, Engelman AN. Capsid-dependent host factors in HIV-1 infection. Trends Microbiol. 2017;25:741–55.

CAS  PubMed  PubMed Central  Google Scholar 

11.

Christensen DE, Ganser-Pornillos BK, Johnson JS, Pornillos O, Sundquist WI. Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science. 2020;370:eabc8420.

CAS  PubMed  PubMed Central  Google Scholar 

12.

Novikova M, Zhang Y, Freed EO, Peng K. Multiple roles of HIV-1 capsid during the virus replication cycle. Virol Sin. 2019;34:119–34.

CAS  PubMed  PubMed Central  Google Scholar 

13.

Hulme AE, Perez O, Hope TJ. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci USA. 2011;108:9975–80.

CAS  PubMed  PubMed Central  Google Scholar 

14.

AlBurtamani N, Paul A, Fassati A. The role of capsid in the early steps of HIV-1 infection: new insights into the core of the matter. Viruses. 2021;13:1161.

CAS  PubMed  PubMed Central  Google Scholar 

15.

Carnes SK, Sheehan JH, Aiken C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr Opin HIV AIDS. 2018;13:359–65.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Tedbury PR, Freed EO. HIV-1 gag: an emerging target for antiretroviral therapy. Curr Top Microbiol Immunol. 2015;389:171–201.

CAS  PubMed  PubMed Central  Google Scholar 

17.

Berger EA, Murphy PM, Farber JM. CHEMOKINE RECEPTORS AS HIV-1 CORECEPTORS: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.

CAS  PubMed  Google Scholar 

18.

Chen B. Molecular mechanism of HIV-1 entry. Trends Microbiol. 2019;27:878–91.

CAS  PubMed  PubMed Central  Google Scholar 

19.

Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol. 2002;76:5667.

CAS  PubMed  PubMed Central  Google Scholar 

20.

Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol. 2015;13:471–83.

CAS  PubMed  PubMed Central  Google Scholar 

21.

Francis AC, Melikyan GB. Single HIV-1 imaging reveals progression of infection through CA-dependent steps of docking at the nuclear pore, uncoating, and nuclear transport. Cell Host Microbe. 2018;23:536-548.e536.

CAS  PubMed  PubMed Central  Google Scholar 

22.

Peng K, Muranyi W, Glass B, Laketa V, Yant SR, Tsai L, Cihlar T, Müller B, Kräusslich H-G. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. Elife. 2014;3:e04114.

PubMed  PubMed Central  Google Scholar 

23.

Francis AC, Marin M, Prellberg MJ, Palermino-Rowland K, Melikyan GB. HIV-1 uncoating and nuclear import precede the completion of reverse transcription in cell lines and in primary macrophages. Viruses. 2020;12:1234.

CAS  PubMed Central  Google Scholar 

24.

Yamashita M, Emerman M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol. 2004;78:5670–8.

CAS  PubMed  PubMed Central  Google Scholar 

25.

Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature. 2013;503:402–5.

CAS  PubMed  PubMed Central  Google Scholar 

26.

Fernandez J, Portilho DM, Danckaert A, Munier S, Becker A, Roux P, Zambo A, Shorte S, Jacob Y, Vidalain P-O, et al. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J Biol Chem. 2015;290:4631–46.

CAS  PubMed  Google Scholar 

27.

Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA, Schulte B, Diaz-Griffero F, Walsh D, Naghavi MH. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun. 2015;6:6660.

CAS  PubMed  Google Scholar 

28.

Malikov V, Naghavi MH. Localized phosphorylation of a kinesin-1 adaptor by a capsid-associated kinase regulates HIV-1 motility and uncoating. Cell Rep. 2017;20:2792–9.

CAS  PubMed  PubMed Central  Google Scholar 

29.

Dharan A, Campbell EM. Role of microtubules and microtubule-associated proteins in HIV-1 infection. J Virol. 2018;92:e00085-00018.

Google Scholar 

30.

Naghavi MH. HIV-1 capsid exploitation of the host microtubule cytoskeleton during early infection. Retrovirology. 2021;18:19.

CAS  PubMed  PubMed Central  Google Scholar 

31.

Matreyek KA, Engelman A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol. 2011;85:7818.

CAS  PubMed  PubMed Central  Google Scholar 

32.

Matreyek KA, Yücel SS, Li X, Engelman A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLOS Pathog. 2013;9:e1003693.

PubMed  PubMed Central  Google Scholar 

33.

Meehan AM, Saenz DT, Guevera R, Morrison JH, Peretz M, Fadel HJ, Hamada M, van Deursen J, Poeschla EM. A cyclophilin homology domain-independent role for Nup358 in HIV-1 infection. PLOS Pathog. 2014;10:e1003969.

PubMed  PubMed Central  Google Scholar 

34.

Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hué S, Fletcher AJ, Lee K, KewalRamani VN, et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog. 2011;7:e1002439.

CAS  PubMed  PubMed Central  Google Scholar 

35.

Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K, Hu WS, Pathak VK. HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci USA. 2020;117:5486–93.

CAS  PubMed  PubMed Central  Google Scholar 

36.

Li C, Burdick RC, Nagashima K, Hu WS, Pathak VK. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Proc Natl Acad Sci USA. 2021;118:e2019467118.

CAS  PubMed  PubMed Central  Google Scholar 

37.

Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE, Mattei S, Allegretti M, Börner K, Rada J, Müller B, et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell. 2021;184:1032-1046.e1018.

CAS  PubMed  PubMed Central  Google Scholar 

38.

Müller TG, Zila V, Peters K, Schifferdecker S, Stanic M, Lucic B, Laketa V, Lusic M, Müller B, Kräusslich HG. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. Elife. 2021;10:e64776.

PubMed  PubMed Central  Google Scholar 

39.

Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med. 2012;2:a006890–a006890.

PubMed  PubMed Central  Google Scholar 

40.

Cook NJ, Li W, Berta D, Badaoui M, Ballandras-Colas A, Nans A, Kotecha A, Rosta E, Engelman AN, Cherepanov P. Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science. 2020;367:806–10.

CAS  PubMed  PubMed Central  Google Scholar 

41.

Andrake MD, Skalka AM. Retroviral integrase: then and now. Annu Rev Virol. 2015;2:241–64.

CAS  PubMed  PubMed Central  Google Scholar 

42.

Kirchhoff F. HIV life cycle: overview. In: Hope TJ, Stevenson M, Richman D, editors. Encyclopedia of AIDS. New York: Springer; 2013. p. 1–9.

Google Scholar 

43.

Siliciano RF, Greene WC. HIV latency. Cold Spring Harbor Perspect Med. 2011;1:a007096.

Google Scholar 

留言 (0)

沒有登入
gif