Human papillomavirus16 E6 but not E7 upregulates GLUT1 expression in lung cancer cells by upregulating thioredoxin expression

1. Guo, Y, Meng, X, Ma, J, et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction. Int J Mol Sci. 2014;15(5):7974‐7986.
Google Scholar | Crossref | Medline2. Wu, MZ, Li, WN, Cha, N, et al. Diagnostic utility of HPV16 E6 mRNA or E7 mRNA quantitative expression for cervical cells of patients with dysplasia and carcinoma. Cell Transplant. 2018;27(9):1401‐1406.
Google Scholar | SAGE Journals | ISI3. Bouvard, V, Baan, R, Straif, K, et al. WHO International agency for research on cancer monograph working group. A review of human carcinogens–part B: biological agents. Lancet Oncol. 2009;10(4):321‐322.
Google Scholar | Crossref | Medline | ISI4. Menon, S, van den Broeck, D, Rossi, R, Ogbe, E, Mabeya, H. Multiple HPV infections in female sex workers in western Kenya: implications for prophylactic vaccines within this sub population. Infect Agent Cancer. 2017;12:2.
Google Scholar | Crossref | Medline5. Narisawa-Saito, M, Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98(10):1505‐1511.
Google Scholar | Crossref | Medline | ISI6. Wu, MZ, Wang, S, Zheng, M, et al. The diagnostic utility of p16 immunostaining in differentiating cancer and HSIL from LSIL and benign in cervical cells. Cell Transplant. 2019;28(2):195‐200.
Google Scholar | SAGE Journals | ISI7. Silva, EM, Mariano, VS, Pastrez, PRA, et al. Human papillomavirus is not associated to non-small cell lung cancer; data from a prospective cross-sectional study. Infect Agent Cancer. 2019;14:18.
Google Scholar | Crossref | Medline8. Colombara, DV, Manhart, LE, Carter, JJ, et al. Prior human polyomavirus and papillomavirus infection and incident lung cancer: a nested case-control study. Cancer Causes Control. 2015;26(12):1835‐1844.
Google Scholar | Crossref | Medline9. Yu, Y, Liu, X, Yang, Y, et al. Effect of FHIT loss and p53 mutation on HPV-infected lung carcinoma development. Oncol Lett. 2015;10(1):392‐398.
Google Scholar | Crossref | Medline10. Iwamasa, T, Miyagi, J, Tsuhako, K, et al. Prognostic implication of human papillomavirus infection in squamous cell carcinoma of the lung. Pathol Res Pract. 2000;196(4):209‐218.
Google Scholar | Crossref | Medline11. Gui, S, Xie, X, O’Neill, WQ, et al. P53 functional states are associated with distinct aldehyde dehydrogenase transcriptomic signatures. Sci Rep. 2020;10(1):1097.
Google Scholar | Crossref | Medline12. Rajavel, T, Banu Priya, G, Suryanarayanan, V, Singh, SK, Pandima Devi, K. Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549 cells via targeting thioredoxin reductase by a p53 dependent mechanism. Eur J Pharmacol. 2019;855:112‐123.
Google Scholar | Crossref | Medline13. Tang, X, Zhang, Q, Nishitani, J, Brown, J, Shi, S, Le, AD. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res. 2007;13(9):2568‐2576.
Google Scholar | Crossref | Medline14. Zhang, EY, Tang, XD. Human papillomavirus type 16/18 oncoproteins: potential therapeutic targets in non-smoking associated lung cancer. Asian Pac J Cancer Prev. 2012;13(11):5363‐5369.
Google Scholar | Crossref | Medline15. Fan, R, Hou, WJ, Zhao, YJ, et al. Overexpression of HPV16 E6/E7 mediated HIF-1α upregulation of GLUT1 expression in lung cancer cells. Tumour Biol. 2016;37(4):4655‐4663.
Google Scholar | Crossref | Medline16. Guo, NN, Sun, XJ, Xie, YK, Yang, GW, Kang, CJ. Cloning and functional characterization of thioredoxin gene from kuruma shrimp marsupenaeus japonicus. Fish Shellfish Immunol. 2019;86:429‐435.
Google Scholar | Crossref | Medline17. Fath, MA, Ahmad, IM, Smith, CJ, Spence, J, Spitz, DR. Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res. 2011;17(19):6206‐6217.
Google Scholar | Crossref | Medline18. Zheng, X, Xu, W, Sun, R, Yin, H, Dong, C, Zeng, H. Synergism between thioredoxin reductase inhibitor ethaselen and sodium selenite in inhibiting proliferation and inducing death of human non-small cell lung cancer cells. Chem Biol Interact. 2017;275:74‐85.
Google Scholar | Crossref | Medline19. Ceccarelli, J, Delfino, L, Zappia, E, et al. The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. Int J Cancer. 2008;123(8):1770‐1778.
Google Scholar | Crossref | Medline20. Duan, D, Wang, Y, Pan, D, et al. Targeting thioredoxin reductase by deoxyelephantopin from Elephantopus scaber triggers cancer cell apoptosis. Arch Biochem Biophys. 2021 Oct 30;711:109028. doi: 10. 1016/j. abb. 2021. Epub 2021 Sep 10.
Google Scholar | Crossref | Medline21. Fan, J, Yu, H, Lv, Y, Yin, L. Diagnostic and prognostic value of serum thioredoxin and DJ-1 in non-small cell lung carcinoma patients. Tumour Biol. 2016;37(2):1949‐1958.
Google Scholar | Crossref | Medline22. Kelleher, ZT, Sha, Y, Foster, MW, Foster, WM, Forrester, MT, Marshall, HE. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem. 2014;289(5):3066‐3072.
Google Scholar | Crossref | Medline23. Zhao, H, Sun, J, Shao, J, et al. Glucose transporter 1 promotes the malignant phenotype of non-small cell lung cancer through integrin β1/Src/FAK signaling. J Cancer. 2019;10(20):4989‐4997.
Google Scholar | Crossref | Medline24. Gu, NJ, Wu, MZ, He, L, et al. HPV 16 E6/E7 up-regulate the expression of both HIF-1α and GLUT1 by inhibition of RRAD and activation of NF-κB in lung cancer cells. J Cancer. 2019;10(27):6903‐6909.
Google Scholar | Crossref | Medline25. Higashi, K, Ueda, Y, Sakurai, A, et al. Correlation of glut-1 glucose transporter expression with [(18)F]FDG uptake in non-small cell lung cancer. Eur J Nucl Med. 2000;27(12):1778–1785.
Google Scholar | Crossref26. Gonzalez-Menendez, P, Hevia, D, Mayo, JC, Sainz, RM. The dark side of glucose transporters in prostate cancer: are they a new feature to characterize carcinomas? Int J Cancer. 2018;142(12):2414‐2424.
Google Scholar | Crossref | Medline27. Long, D, Wu, H, Tsang, AW, et al. The oxidative state of cysteine thiol 144 regulates the SIRT6 glucose homeostat. Sci Rep. 2017;7(1):11005.
Google Scholar | Crossref | Medline28. Pezzuto, A, D’Ascanio, M, Ricci, A, Pagliuca, A, Carico, E. Expression and role of p16 and GLUT1 in malignant diseases and lung cancer: a review. Thorac Cancer. 2020;11(11):3060‐3070.
Google Scholar | Crossref | Medline29. Pezzuto, A, Cappuzzo, F, D’Arcangelo, M, et al. Prognostic value of p16 protein in patients With surgically treated non-small cell lung cancer; relationship with Ki-67 and PD-L1. Anticancer Res. 2020;40(2):983‐990.
Google Scholar | Crossref | Medline30. Warburg, O . On the origin of cancer cells. Science. 1956;123(3191):309‐314.
Google Scholar | Crossref | Medline | ISI31. Pezzuto, A, Carico, E. Role of HIF-1 in cancer progression: novel insights. A review. Curr Mol Med. 2018;18(6):343‐351.
Google Scholar | Crossref | Medline32. Zhao, HY, Yang, JH, Wang, X, Sun, J, Wang, EH, Wu, GP. Analysis of human papillomavirus 16 E6/E7 and L1 in the bronchial brushing cells of patients with squamous cell carcinoma of the lungs. Int J Clin Exp Pathol. 2018;11(8):4124‐4129.
Google Scholar | Medline33. Tang, JY, Li, DY, He, L, Qiu, XS, Wang, EH, Wu, GP. HPV 16 E6/E7 promote the glucose uptake of GLUT1 in lung cancer through downregulation of TXNIP due to inhibition of PTEN phosphorylation. Front Oncol. 2020;10:559543.
Google Scholar | Crossref | Medline34. Azoitei, N, Becher, A, Steinestel, K, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3.
Google Scholar | Crossref | Medline35. Zheng, B, Geng, L, Zeng, L, Liu, F, Huang, Q. AKT2 Contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis. Cell Signal. 2018;45:122‐131.
Google Scholar | Crossref | Medline36. Yao, A, Xiang, Y, Si, YR, et al. PKM2 promotes glucose metabolism through A let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem. 2019;120(4):6542‐6554.
Google Scholar | Crossref | Medline37. Niu, XY, Peng, ZL, Duan, WQ, Wang, H, Wang, P. Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer. 2006;16(2):743‐751.
Google Scholar | Crossref | Medline38. Cui, X, Wang, X, Zhou, X, Jia, J, Chen, H, Zhao, W. miR-106a regulates cell proliferation and autophagy by targeting LKB1 in HPV-16-associated cervical cancer. Mol Cancer Res. 2020;18(8):1129‐1141.
Google Scholar | Crossref | Medline39. Shao, JS, Sun, J, Wang, S, et al. HPV16 E6/E7 upregulates HIF-2α and VEGF by inhibiting LKB1 in lung cancer cells. Tumour Biol. 2017;39(7):1010428317717137.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif