Effectiveness of laddered embossed structure in a locking compression plate for biodegradable orthopaedic implants

1. Chandra, G, Pandey, A. Biodegradable bone implants in orthopedic applications: a review. Biocybern Biomed Eng 2020; 40(2): 596–610. Apr. 2020. doi: 10.1016/j.bbe.2020.02.003
Google Scholar | Crossref2. Zheng, YF, Gu, XN, Witte, F. Biodegradable metals. Mater Sci Eng R 2012; 77: 93–109. doi: 10.1007/978-1-4614-3942-4_5
Google Scholar | Crossref3. Han, H-S, Loffredo, S, Jun, I, et al. Current status and outlook on the clinical translation of biodegradable metals. Mater Today 2019; 23: 57–71. doi: 10.1016/j.mattod.2018.05.018
Google Scholar | Crossref4. Kumar, K, Gill, RS, Batra, U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater Technol 2018; 33(2): 153–172. doi: 10.1080/10667857.2017.1377973
Google Scholar | Crossref5. Kamrani, S, Fleck, C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. BioMetals 2019; 32(2): 185–193. doi: 10.1007/s10534-019-00170-y
Google Scholar | Crossref | Medline6. Chandra, G, Pandey, A. Preparation strategies for Mg-alloys for biodegradable orthopaedic implants and other biomedical applications: a review. IRBM 2020. doi: 10.1016/j.irbm.2020.06.003
Google Scholar | Crossref7. Meischel, M, Hörmann, D, Draxler, J, et al. Bone-implant degradation and mechanical response of bone surrounding Mg-alloy implants. J Mech Behav Biomed Mater 2017; 71: 307–313. doi: 10.1016/j.jmbbm.2017.03.025
Google Scholar | Crossref | Medline8. Chen, Q, Thouas, GA. Metallic implant biomaterials. Mater Sci Eng R Rep 2015; 87: 1–57. doi: 10.1016/j.mser.2014.10.001
Google Scholar | Crossref9. Liu, C, Ren, Z, Xu, Y, et al. Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning 2018; 2018: 1–15. doi: 10.1155/2018/9216314
Google Scholar | Crossref10. Shuai, C, Li, S, Peng, S, et al. Biodegradable metallic bone implants. Mater Chem Front 2019; 3(4): 544–562. doi: 10.1039/c8qm00507a
Google Scholar | Crossref11. Li, H, Zheng, Y, Qin, L. Progress of biodegradable metals. Prog Nat Sci Mater Int 2014; 24(5): 414–422. doi: 10.1016/j.pnsc.2014.08.014
Google Scholar | Crossref12. Lee, ES, Goh, T, Heo, J-Y, et al. Experimental evaluation of screw pullout force and adjacent bone damage according to pedicle screw design parameters in normal and osteoporotic bones. Appl Sci 2019; 9(3): 586. doi: 10.3390/app9030586
Google Scholar | Crossref13. Ghimire, S, Miramini, S, Richardson, M, et al. Effects of dynamic loading on fracture healing under different locking compression plate configurations: a finite element study. J Mech Behav Biomed Mater 2019; 94: 74–85. doi: 10.1016/j.jmbbm.2019.03.004
Google Scholar | Crossref | Medline14. Wang, M, Yang, N, Wang, X. A review of computational models of bone fracture healing. Med Biol Eng Comput 2017; 55(11): 1895–1914. doi: 10.1007/s11517-017-1701-3
Google Scholar | Crossref | Medline15. Rouhi, G, Hamedani, MA. A brief introduction into orthopaedic implants: screws, plates, and nails. Res. Chapter 2012: 1–19.
Google Scholar16. Moriarity, A, Ellanti, P, Mohan, K, et al. A comparison of complication rates between locking and non-locking plates in distal fibular fractures. Orthop Traumatol Surg Res 2018; 104(4): 503–506. doi: 10.1016/j.otsr.2018.03.001
Google Scholar | Crossref | Medline17. ASTM International . ASTM F382-17, standard specification and test method for metallic bone plates. West Conshohocken, PA: ASTM International, 2017. www.astm.org.
Google Scholar18. Mehta, CH, Narayan, R, Nayak, UY. Computational modeling for formulation design. Drug Discov Today 2019; 24(3): 781–788. doi: 10.1016/j.drudis.2018.11.018
Google Scholar | Crossref | Medline19. Duprez, M, Bordas, SPA, Bucki, M, et al. Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study. Appl Math Model 2020; 77: 709–723. Jan. 2020. doi: 10.1016/j.apm.2019.07.055
Google Scholar | Crossref20. Lee, Y, Ogihara, N, Lee, T. Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater 2019; 97: 312–320. Sep. 01. doi: 10.1016/j.jmbbm.2019.05.018
Google Scholar | Crossref | Medline21. Wang, C, Li, X, Chen, WW, et al. Three-dimensional finite element analysis of intramedullary nail with different materials in the treatment of intertrochanteric fractures. Injury 2021; 52: 705–712. doi: 10.1016/j.injury.2020.10.102
Google Scholar | Crossref | Medline22. Chandra, G, Pandey, A, Pandey, S. Design of a biodegradable plate for femoral shaft fracture fixation. Med Eng Phys 2020; 81: 86–96. doi: 10.1016/j.medengphy.2020.05.010
Google Scholar | Crossref | Medline23. Kaur, M, Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C 2019; 102: 844–862. doi: 10.1016/j.msec.2019.04.064
Google Scholar | Crossref | Medline24. Willbold, E, Kalla, K, Bartsch, I, et al. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. Acta Biomater 2013; 9(10): 8509–8517. doi: 10.1016/j.actbio.2013.02.015
Google Scholar | Crossref | Medline25. Chandra, G, Pandey, A. Design approaches and challenges for biodegradable bone implants: a review. Expert Rev Med Devices 2021; 18(7): 629–648. doi: 10.1080/17434440.2021.1935875
Google Scholar | Crossref | Medline26. Fan, J, Qiu, X, Niu, X, et al. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg-1.5Y-1.2Zn-0.44Zr alloys for biodegradable metallic implants. Mater Sci Eng C 2013; 33(4): 2345–2352. doi: 10.1016/j.msec.2013.01.063
Google Scholar | Crossref | Medline27. Yan, Y, Cao, H, Kang, Y, et al. Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. J Alloys Compd 2017; 693: 1277–1289. doi: 10.1016/j.jallcom.2016.10.017
Google Scholar | Crossref28. Hou, L, Li, Z, Zhao, H, et al. Microstructure, mechanical properties, corrosion behavior and biocompatibility of As-extruded biodegradable Mg–3Sn–1Zn–0.5Mn alloy. J Mater Sci Technol 2016; 32(9): 874–882. doi: 10.1016/j.jmst.2016.07.004
Google Scholar | Crossref29. Kang, Y, Du, B, Li, Y, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. J Mater Sci Technol 2019; 35(1): 6–18. doi: 10.1016/j.jmst.2018.09.020
Google Scholar | Crossref30. Li, Z, Chen, M, Li, W, et al. The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg-Zn-Zr-Sr alloy. J Alloys Compd 2017; 702: 290–302. doi: 10.1016/j.jallcom.2017.01.178
Google Scholar | Crossref31. Yang, Y, He, C, Dianyu, E, et al. Mg bone implant: features, developments and perspectives. Materials & Design 2020; 185: 108259. Jan. 05. doi: 10.1016/j.matdes.2019.108259
Google Scholar | Crossref32. Weizbauer, A, Modrejewski, C, Behrens, S, et al. Comparative in vitro study and biomechanical testing of two different magnesium alloys. J Biomater Appl 2014; 28(8): 1264–1273. doi: 10.1177/0885328213506758
Google Scholar | SAGE Journals | ISI33. Koç, M, Tahmasebifar, A, Evis, Z, et al. Review of magnesium-based biomaterials and their applications. J Magnes Alloy 2018; 6(1): 23–43. doi: 10.1016/j.jma.2018.02.003
Google Scholar | Crossref34. Agarwal, S, Curtin, J, Duffy, B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 2016; 68: 948–963. doi: 10.1016/j.msec.2016.06.020
Google Scholar | Crossref | Medline35. Sanchez, AHM, Luthringer, BJC, Feyerabend, F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater 2015; 13(3): 16–31. doi: 10.1016/j.actbio.2014.11.048
Google Scholar | Crossref | Medline36. Rho, JY, Kuhn-Spearing, L, Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998; 20(2): 92–102. DOI: 10.1016/S1350-4533(98)00007-1
Google Scholar | Crossref | Medline | ISI37. Zeng, W, Liu, Y, Hou, X. Biomechanical evaluation of internal fixation implants for femoral neck fractures: a comparative finite element analysis. Comput Methods Programs Biomed 2020; 196: 105714. doi: 10.1016/j.cmpb.2020.105714
Google Scholar | Crossref | Medline38. Subasi, O, Oral, A, Lazoglu, I. A novel adjustable locking plate (ALP) for segmental bone fracture treatment. Injury 2019; 50(10): 1612–1619. doi: 10.1016/j.injury.2019.08.034
Google Scholar | Crossref | Medline39. Hart, NH, Nimphius, S, Rantalainen, T, et al. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact 2017; 17(3): 114–139.
Google Scholar | Medline40. Dalla, A, Bankoff, P. Biomechanical characteristics of the bone, human musculoskeletal biomechanics. In: Human Musculoskeletal Biomechanics. Intechopen, 2012, pp. 61–86.
Google Scholar41. Martens, M, van Audekercke, R, de Meester, P, et al. Mechanical behaviour of femoral bones in bending loading. J Biomech 1986; 19(6): 443–454. doi: 10.1016/0021-9290(86)90021-7
Google Scholar | Crossref | Medline | ISI42. Chandra, G, Pandey, A. Design and analysis of biodegradable buttress threaded screws for fracture fixation in orthopedics: a finite element analysis. Biomed Phys Eng Express 2021; 7(4): 45010. doi: 10.1088/2057-1976/ac00d1
Google Scholar | Crossref43. Bailón-Plaza, A, Van Der Meulen, MCH. Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 2003; 36(8): 1069–1077. doi: 10.1016/S0021-9290(03)00117-9
Google Scholar | Crossref | Medline44. Abdul Wahab, AH, Wui, NB, Abdul Kadir, MR, et al. Biomechanical evaluation of three different configurations of external fixators for treating distal third tibia fracture: finite element analysis in axial, bending and torsion load. Comput Biol Med 2020; 127: 104062. doi: 10.1016/j.compbiomed.2020.104062
Google Scholar | Crossref | Medline45. Abd Aziz, AU, Abdul Wahab, AH, Abdul Rahim, RA, et al. A finite element study: finding the best configuration between unilateral, hybrid, and ilizarov in terms of biomechanical point of view. Injury 2020; 51(11): 2474–2478. doi: 10.1016/j.injury.2020.08.001
Google Scholar | Crossref | Medline46. Steiner, M, Claes, L, Ignatius, A, et al. Disadvantages of interfragmentary shear on fracture healing - Mechanical insights through numerical simulation. J Orthop Res 2014; 32(7): 865–872. doi: 10.1002/jor.22617
Google Scholar | Crossref | Medline47. Fouda, N, Mostafa, R, Saker, A. Numerical study of stress shielding reduction at fractured bone using metallic and composite bone-plate models. Ain Shams Eng J 2019; 10(3): 481–488. doi: 10.1016/J.ASEJ.2018.12.005
Google Scholar | Crossref48. Bui, HP, Tomar, S, Courtecuisse, H, et al. Real-time error control for surgical simulation. IEEE Trans Biomed Eng 2018; 65(3): 596–607. doi: 10.1109/TBME.2017.2695587
Google Scholar | Crossref |

留言 (0)

沒有登入
gif