Natural killer cell deficiency experiences higher risk of sepsis after critical intracerebral hemorrhage

1. Keep, RF, Hua, Y, Xi, G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8): 720–731.
Google Scholar | Crossref | Medline | ISI2. Shi, K, Tian, DC, Li, ZG, et al. (2019) Global brain inflammation in stroke. Lancet Neurol 18(11): 1058–1066.
Google Scholar | Crossref | Medline3. Jamali, SA, Turnbull, MT, Kanekiyo, T, et al. (2020) Elevated neutrophil-lymphocyte ratio is predictive of poor outcomes following aneurysmal subarachnoid hemorrhage. Journal of Stroke and Cerebrovascular Diseases 29(4): 104631.
Google Scholar | Crossref | Medline4. Morotti, A, Marini, S, Jessel, MJ, et al. (2017) Lymphopenia, infectious complications, and outcome in spontaneous intracerebral hemorrhage. Neurocritical Care 26(2): 160–166.
Google Scholar | Crossref | Medline5. Rhodes, A, Evans, LE, Alhazzani, W, et al. (2017) Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine 43(3): 304–377.
Google Scholar | Crossref | Medline6. Lord, AS, Langefeld, CD, Sekar, P, et al. (2014) Infection after intracerebral hemorrhage. Stroke 45(12): 3535–3542.
Google Scholar | Crossref | Medline7. Hagen, M, Sembill, JA, Sprügel, MI, et al. (2019) Systemic inflammatory response syndrome and long-term outcome after intracerebral hemorrhage. Neurology Neuroimmunology Neuroinflammation 6(5): e588.
Google Scholar | Crossref8. Rowan, KM, Rowan, KM, Angus, DC, et al. (2017) Early, goal-directed therapy for septic shock: a patient-level meta-analysis. The New England Journal of Medicine 376(23): 2223–2234.
Google Scholar | Crossref | Medline9. Kaur, G, Stein, LK, Boehme, A, et al. (2019) Risk of readmission for infection after surgical intervention for intracerebral hemorrhage. Journal of the Neurological Sciences 399: 161–166.
Google Scholar | Crossref | Medline10. Murthy, SB, Moradiya, Y, Shah, J, et al. (2016) Nosocomial infections and outcomes after intracerebral hemorrhage: a population-based study. Neurocritical Care 25(2): 178–184.
Google Scholar | Crossref | Medline11. Mengel, A, Ulm, L, Hotter, B, et al. (2019) Biomarkers of immune capacity, infection and inflammation are associated with poor outcome and mortality after stroke: the PREDICT study. BMC Neurology 19(1): 148.
Google Scholar | Crossref | Medline12. Tong, DM, Zhou, YT (2017) No awakening in supratentorial intracerebral hemorrhage is potentially caused by sepsis-associated encephalopathy. Medical Science Monitor 23: 4408–4414.
Google Scholar | Crossref | Medline13. Zetterling, M, Engström, BE, Hallberg, L, et al. (2011) Cortisol and adrenocorticotropic hormone dynamics in the acute phase of subarachnoid haemorrhage. British Journal of Neurosurgery 25(6): 684–692.
Google Scholar | Crossref | Medline14. Poll, EM, Boström, A, Bürgel, U, et al. (2010) Cortisol dynamics in the acute phase of aneurysmal subarachnoid hemorrhage: associations with disease severity and outcome. Journal of Neurotrauma 27(1): 189–195.
Google Scholar | Crossref | Medline15. Mei, S, Shao, Y, Fang, Y, et al. (2021) The changes of leukocytes in brain and blood after intracerebral hemorrhage. Frontiers in Immunology 12: 617163.
Google Scholar | Crossref | Medline16. Illanes, S, Liesz, A, Sun, L, et al. (2011) Hematoma size as major modulator of the cellular immune system after experimental intracerebral hemorrhage. Neuroscience Letters 490(3): 170–174.
Google Scholar | Crossref | Medline17. Li, YJ, Chang, GQ, Liu, Y, et al. (2015) Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neuroscience Bulletin 31(6): 755–762.
Google Scholar | Crossref | Medline18. Warny, M, Helby, J, Nordestgaard, BG, et al. (2018) Lymphopenia and risk of infection and infection-related death in 98,344 individuals from a prospective Danish population-based study. PLoS Medicine 15(11): e1002685.
Google Scholar | Crossref | Medline19. Rimmelé, T, Payen, D, Cantaluppi, V, et al. (2016) Immune cell phenotype and function in sepsis. Shock 45(3): 282–291.
Google Scholar | Crossref | Medline20. Frattari, A, Polilli, E, Primiterra, V, et al. (2018) Analysis of peripheral blood lymphocyte subsets in critical patients at ICU admission: a preliminary investigation of their role in the prediction of sepsis during ICU stay. International Journal of Immunopathology and Pharmacology 32: 2058738418792310.
Google Scholar | SAGE Journals | ISI21. Chiche, L, Forel, JM, Thomas, G, et al. (2011) The role of natural killer cells in sepsis. Journal of Biomedicine & Biotechnology 2011: 986491.
Google Scholar | Crossref | Medline22. Holub, M, Klučková, Z, Helcl, M, et al. (2003) Lymphocyte subset numbers depend on the bacterial origin of sepsis. Clinical Microbiology and Infection 9(3): 202–211.
Google Scholar | Crossref | Medline23. Qin, L, Jing, X, Qiu, Z, et al. (2016) Aging of immune system: immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. Aging 8(5): 848–859.
Google Scholar | Crossref | Medline24. Giamarellos-Bourboulis, EJ, Tsaganos, T, Spyridaki, E, et al. (2006) Early changes of CD4-positive lymphocytes and NK cells in patients with severe gram-negative sepsis. Critical Care 10(6): R166.
Google Scholar | Crossref | Medline25. Kumar, V (2019) Natural killer cells in sepsis: underprivileged innate immune cells. European Journal of Cell Biology 98(2–4): 81–93.
Google Scholar | Crossref | Medline26. Martin, MD, Badovinac, VP, Griffith, TS (2020) CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Frontiers in Immunology 11: 1364.
Google Scholar | Crossref | Medline27. Kessel, A, Bamberger, E, Masalha, M, et al. (2009) The role of T regulatory cells in human sepsis. Journal of Autoimmunity 32(3–4): 211–215.
Google Scholar | Crossref | Medline28. Andaluz-Ojeda, D, Iglesias, V, Bobillo, F, et al. (2011) Early natural killer cell counts in blood predict mortality in severe sepsis. Critical Care 15(5): R243.
Google Scholar | Crossref | Medline29. Giamarellos-Bourboulis, EJ (2014) Natural killer cells in sepsis. Critical Care Medicin 42(6): 1579–1580.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif